Author(s): Isha Gaurav, Tanuja


DOI: 10.5958/0974-360X.2021.00060.3   

Address: Isha Gaurav1*, Tanuja2
1Department of Botany, Magadh University, Bodh Gaya, Bihar, India.
2Department of Botany, Thakur Prasad Singh College (Patliputra University), Patna, Bihar, India.
*Corresponding Author

Published In:   Volume - 14,      Issue - 1,     Year - 2021

Background: Nanotechnology is one the most crucial areas of research with a wide biomedical application including drug delivery. Conventionally physical, and chemical methods have been used for the synthesis of metal-based nanoparticles (NPs) however, they show cytotoxicity and even not better for sustainable environment. Therefore, green synthesis of NPs using plant extract is a better alternative. Herein, we report the synthesis, characterization, and antimicrobial activity of silver nanoparticles with rhizome extract of Curcuma longa (AgNPs-RECL). Objective: To perform green synthesis of AgNPs-RECL, followed by their characterization via scanning electron microscopy (SEM), ultraviolet (UV)-visible spectroscopy, X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FT-IR), and high-performance liquid chromatography (HPLC). Further, antimicrobial activity of AgNPs-RECL was examined using disc diffusion test. Result: AgNPs-RECL showed antimicrobial activity towards two plant pathogenic bacteria Xanthomonas anoxopodis and Erwinia amylovora. Conclusion: It was concluded that AgNPs-RECL have the potential to inhibit plant pathogenic bacteria like Xanthomonas and Erwinia, which could be useful for nano drug delivery applications.

Cite this article:
Isha Gaurav, Tanuja. Green synthesis and Characterization of Silver Nanoparticles with Rhizome extract of Curcuma longa (AgNPs-RECL) for Antimicrobial activity towards Xanthomonas and Erwinia species. Research J. Pharm. and Tech. 2021; 14(1):325-330. doi: 10.5958/0974-360X.2021.00060.3

Isha Gaurav, Tanuja. Green synthesis and Characterization of Silver Nanoparticles with Rhizome extract of Curcuma longa (AgNPs-RECL) for Antimicrobial activity towards Xanthomonas and Erwinia species. Research J. Pharm. and Tech. 2021; 14(1):325-330. doi: 10.5958/0974-360X.2021.00060.3   Available on:

1.    Mohanpuria P, Rana NK, Yadav SK. Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res. 2008;10:   507–517.
2.    Basu S, Samanta HS, Ganguly J. Green synthesis and swelling behavior of Ag-nanocomposite semi-IPN hydrogels and their drug delivery using Dolichos biflorus Linn. Soft Mater. 2018;16(1): 7–19.
3.    Carabineiro S. Applications of gold nanoparticles in nanomedicine: recent advances in vaccines. Molecules. 2017; 22(5): 857.
4.    Zhang J, Si G, Zou J, Fan R, Guo A, Wei X. Antimicrobial Effects of Silver Nanoparticles Synthesized by Fatsia japonica Leaf Extracts for Preservation of Citrus Fruits. J Food Sci. 2017;82(8): 1861–1866.
5.    Mc Gillicuddy E, Murray I, Kavanagh S, et al. Silver nanoparticles in the environment: sources, detection and ecotoxicology. Sci Total Environ. 2017; 575: 231–246.
6.    Raveendran P, Fu J, Wallen SL. Completely “green” synthesis and stabilization of metal nanoparticles. J Am Chem Soc. 2003;125: 13940–13941.
7.    Ushimaru, P.I., T.N. Mariama, C. Luiz, B. Di Luciano and F.J. Ary.. Antibacterial activity of medicinal plant extract. Braz. J. Microbial., 2007;38: 717-719.
8.    Odugbemi, T.. Medicinal plants as antimicrobials in: Outline and pictures of Medicinal plants from Nigeria. University of Lagos press, 2006; 53-64.
9.    Chattopadhyay, I., K. Biswas, U. Bandyopadhyay and R.K. Banerjee. Turmeric and curcumin: Biological actions and medicinal applications. Curr. Sci., 2004; 87: 44-53.
10.    10.Chainani-Wu, N. Safety and anti-inflammatory activity of curcumin: a component of turmeric (Curcuma longa). J. Altern. Complement Med., 2003.;9: 161-8.
11.    Joe, B., M. Vijaykumar and B.R. Lokesh. Biological properties of curcumin-cellular and molecular mechanisms of action. Critical Reviews in Food Science and Nutrition, 2004; 44: 97-111.
12.    Chopra, R.N., J.C. Gupta and G.S. Chopra. Pharmacological action of the essential oil of Curcuma longa. Indian J Med Res., 1941;29: 769-772.
13.    Manonmani P, Ramar M, Geetha N, Valan Arasu M, Raskin Erusan R, Mariselvam R, Jerlin Sowmiya J,. Synthesis Of Silver Nanoparticles Using Natural Products From Acalypha Indica (Kuppaimeni) And Curcuma Longa (Turmeric) On Antimicrobial Activities. International Journal of Pharmaceutical Research and Bioscience. 2015
14.    Ramteke C, Chakrabarti T, Sarangi BK, Pandey R-A.( 2013) Synthesis of Silver Nanoparticles from the Aqueous Extract of  Leaves of Ocimum sanctum for Enhanced Antibacterial Activity. J Chem. 2013; 1–7.
15.    Ramteke C, Chakrabarti T, Sarangi Bijaya K, and Pandey Ram-Avatar, Synthesis of Silver Nanoparticles from the Aqueous Extract of Leaves of Ocimum sanctum for Enhanced Antibacterial Activity. (2012) Journal of Chemistry. 2013;7.
16.    A. W. Bauer, W. M. Kirby, J. C. Sherris, and M. Turck, “Antibiotic susceptibility testing by a standardized single disk method,” American Journal of Clinical Pathology, 1966; vol. 45, no. 4, pp. 493–496.
17.    A. Leela and M. Vivekanandan, “Tapping the unexploited plant resources for the synthesis of silver nanoparticles,” African Journal of Biotechnology, 2008; vol. 7, no. 17, pp. 3162–3165.
18.    M. Kowshik, N. Deshmukh, W. Vogel, J. Urban, S. K. Kulkarni, and K. M. Paknikar, “Microbial synthesis of semiconductor CdS nanoparticles, their characterization, and their use in the fabrication of an ideal diode,” Biotechnology and Bioengineering, Vol. 78, no. 5, pp. 583–588, 2002.
19.    K. Govindaraju, S. Tamilselvan, V. Kiruthiga, and G. Singaravelu, “Biogenic silver nanoparticles by Solanum torvum and their promising antimicrobial activity,” Journal of Biopesticides, 2010; vol. 3, no. 1, pp. 394–399.
20.    N. Roy and A. Barik, “Green synthesis of silver nanoparticles from the unexploited weed resources,” International Journal of Nanotechnology, 2010; vol. 4, p. 95.
21.    Li. S. et al. Green synthesis of silver nanoparticles using Capsicum annuum L. extract. Green. Chem. 2007; 9, 852–858.
22.    Sastry, M., Mayya, K. S. and Bandyopadhyay, K. pH Dependent changes in the optical properties of carboxylic acid derivatized silver colloidal particles. Colloids Surf. A: Physicochem. and Engi. Aspects,1997;127, 221–228.
23.    Bunaciu AA, Udriştioiu E gabriela, Aboul-Enein HY. X-Ray Diffraction: Instrumentation and Applications. Crit Rev Anal Chem. 2015; 45(4): 289–299
24.    Dias ACP, Marslin G, Selvakesavan, Gregory F, Sarmento B. Antimicrobial activity of cream incorporated with silver nanoparticles biosynthesized from Withania somnifera. Int J Nanomedicine. 2015;5955.
25.    M. Awwad A, M. Salem N, O. Abdeen A. Biosynthesis of Silver Nanoparticles using Olea europaea Leaves Extract and its Antibacterial Activity. Nanosci Nanotechnol. 2013; 2(6): 164–170.
26.    E. Schraufstatter and H. Bernt, “Antibacterial action of cur- ¨ cumin and related compounds,” Nature, 1949; vol. 164, no. 4167, pp. 456–457.
27.    S. Z. Moghadamtousi, H. A. Kadir, P. Hassandarvish, H. Tajik, S. Abubakar, and K. Zandi, “A review on antibacterial, antiviral, and antifungal activity of curcumin,” BioMed Research International, 2014; Article ID 186864, 12 pages.
28.    S. C. Gupta, S. Patchva, W. Koh, and B. B. Aggarwal, “Discovery of curcumin, a component of golden spice, and its miraculous biological activities,” Clinical and Experimental Pharmacology and Physiology, 2012; vol. 39, no. 3, pp. 283–299.
29.    P. Tyagi, M. Singh, H. Kumari, A. Kumari, and K. Mukhopadhyay, “Bactericidal activity of curcumin I is associated with damaging of bacterial membrane,” PLoS ONE, 2015; vol. 10, no. 3, Article ID e0121313.
30.    W. Raut Rajesh, R. Lakkakula Jaya, S. Kolekar Niranjan, D. Mendhulkar Vijay, and B. Kashid Sahebrao, “Phytosynthesis of silver nanoparticle using Gliricidia sepium (Jacq.),” Current Nanoscience, , 2009; vol. 5, no. 1, pp. 117–122.
31.    N. Niamsa and C. Sittiwet, “Antimicrobial activity of Curcuma longa aqueous extract,” Journal of Pharmacology and Toxicology, , 2009; vol. 4, no. 4, pp. 173–177.
32.    Gopinath, V., Mubarak Ali, D., Priyadarshini, S., Priyadharsshini, N. M., Thajuddin, N., and Velusamy, P. Biosynthesis of silver nanoparticles from Tribulus terrestris and its antimicrobial activity: a novel biological approach. Colloids Surf. B Biointerfaces 2012; 96, 69–74. doi: 10.1016/j.colsurfb.2012. 03.023
33.    Mohanpuria, P., Rana, N. K., and Yadav, S. K. Biosynthesis of nanoparticles: technological concepts and future applications. J. Nanopart. Res. 2008; 10, 507–517. doi: 10.1111/j.1460-9568.2009. 06927.x
34.    Zhang, L. Z., Yu, J. C., Yip, H. Y., Li, Q., Kwong, K. W., Xu, A. W., et al. Ambient light reduction strategy to synthesize silver nanoparticles and silver coated TiO2 with enhanced photocatalytic and bactericidal activities. Langmuir 2003;19, 10372–10380. doi: 10.1021/la035330m
35.    T. Rudrappa and H. P. Bais, “Curcumin, a known phenolic from Curcuma longa, attenuates the virulence of Pseudomonas aeruginosa PAO1 in whole plant and animal pathogenicity models,” Journal of Agricultural and Food Chemistry, 2008; vol. 56, no. 6, pp. 1955–1962.
36.    P. LaColla, E. Tramontano, C. Musiu, M. E. Marongiu, E. Novellino, and G. Greco, “Curcumin-like derivatives with potent activity againstHIV-1 integrase: synthesis, biological evaluation and molecular modeling,” Antiviral Research,  1998; vol. 37, no. 3, pp. 57–57.
37.    P. Anand, A. B. Kunnumakkara, R. A. Newman, and B. B. Aggarwal, “Bioavailability of curcumin: problems and promises,” Molecular Pharmaceutics, 2007; vol. 4, no. 6, pp. 807–818.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

56th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Recent Articles


Not Available