Author(s):
Waill A. Elkhateeb, Marwa O. ELnahas, Kareem M. Mousa, Adel A. Ahmed, Abdu Galib ALKolaibe, Ghoson M. Daba
Email(s):
ghoson.daba@yahoo.com
DOI:
10.52711/0974-360X.2021.01013
Address:
Waill A. Elkhateeb1, Marwa O. ELnahas2, Kareem M. Mousa3, Adel A. Ahmed4, Abdu Galib ALKolaibe5, Ghoson M. Daba6
1Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries Division, National Research Centre, Dokki, Giza, 12622, Egypt.
2Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries Division, National Research Centre, Dokki, Giza, 12622, Egypt.
3Economic Entomology Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El–Sheikh 33–516, Egypt.
4Pests & Plant Protection Department., National Research Centre, Dokki, Giza, Egypt.
5Microbiology Department, Faculty of science, Taiz University, Taiz, Yemen.
6Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries Division, National Research Centre, Dokki, Giza, 12622, Egypt.
*Corresponding Author
Published In:
Volume - 14,
Issue - 11,
Year - 2021
ABSTRACT:
Insects bodies contain multiple distinctive microbial colonies which play key role in the metabolism, development and health of an insect. In the current study bacterial and fungal microbiota were isolated from larval feces and adult wings of two major insect pests in Egypt, the Cotton leaf worm Spodoptera littoralis and the black cutworm Agrotis ipsilon. Isolated pathogens were identified and characterized according to the scientific described methods in such cases. Two different genera of bacteria (Bacillus & Serratia) were isolated from larval feces of both insects while isolated fungus were Paecilomyces variotii and Absidia corymbifera from the feces of A. ipsilon larvae, while Rhozopus stolonifer and Penicillium chrysogenum were isolated from adults wings of the same insect. The fungus Aspergillus flavus, Aspergillus niger and Mucor circinilloides were isolated from feces of S. littoralis larvae. Numerous species of bacteria and fungi had been documented as a bio-agent against many insect pests, and most of them exhibited disruption in life-cycle of different species of Lepidopterous pests. The obtained data sheds light on microbial colonies associated with two major insect pests, however further studies are required to involve the isolated microbiota in the biological control programs of insect pests.
Cite this article:
Waill A. Elkhateeb, Marwa O. ELnahas, Kareem M. Mousa, Adel A. Ahmed, Abdu Galib ALKolaibe, Ghoson M. Daba. Isolation and identification of microbiota from Egyptian common insect pests invading economically important crops. Research Journal of Pharmacy and Technology. 2021; 14(11):5825-0. doi: 10.52711/0974-360X.2021.01013
Cite(Electronic):
Waill A. Elkhateeb, Marwa O. ELnahas, Kareem M. Mousa, Adel A. Ahmed, Abdu Galib ALKolaibe, Ghoson M. Daba. Isolation and identification of microbiota from Egyptian common insect pests invading economically important crops. Research Journal of Pharmacy and Technology. 2021; 14(11):5825-0. doi: 10.52711/0974-360X.2021.01013 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2021-14-11-38
REFERENCES:
1. Price PW, Denno RF, Eubanks MD, Finke DL, Kaplan I. Insect Ecology: Behavior, Populations and Communities; Cambridge University Press, Cambridge, United Kingdom, 2011; pp. 828.
2. Basset Y, Cizek L, Cuénoud P. Arthropod diversity in a tropical forest. 2012; Sci., 338: 1481–1484.
3. Mouhoubi D, Djenidi R, Bounechada M. Contribution to the Study of Diversity, Distribution, and Abundance of Insect Fauna in Salt Wetlands of Setif Region, Algeria. Intern J Zool., 2019; Article ID 2128418.
4. Harrison RL, Lynn DE. New cell lines derived from the black cutworm, Agrotis ipsilon that support replication of the A. ipsilon multiple nucleopolyhedrovirus and several group I nucleopolyhedroviruses. J Invertebr Pathol., 2008; 99: 28–34.
5. Shairra SA, Nouh GM. Efficacy of entomopathogenic nematodes and fungi as biological control agent against the cotton leaf worm, Spodoptera littoralis (Boisd.) Egypt. J Biol Pest Cont., 2014; 24: 247-253.
6. Binning RR, Coats J, Kong X, Hellmich RL. Susceptibility to Bt proteins is not required for Agrotis ipsilon aversion to Bt maize. Pest Manag Sci., 2015; 71: 601–606.
7. Tanani M, Hamadah K, Ghoneim K, Basiouny A, Waheeb H. Toxicity and bioefficacy of Cyromazine on growth and development of the Cotton leafworm Spodoptera littoralis (Lepidoptera: Noctuidae) Int J Res Stud Zool., 2015; 1: 1-15.
8. Mueller UG, Sachs JL. Engineering microbiomes to improve plant and animal health. Trends Microbiol., 2015; 23: 606–617.
9. Lloyd‐Price J, Abu‐Ali G, Huttenhower C. The healthy human microbiome. Genome. Med., 2016; 8: 51.
10. Crotti E, Balloi A, Hamdi C, Sansonno L, Marzorati M, Gonella E, Favia G, Bandi C, Alma A and Daffonchio D. Microbial symbionts: A resource for the management of insect‐related problems. Microb Biotechnol., 2012; 5: 307–317.
11. Mousa KM, Elsharkawy M, Khodeir I, El-Dakhakhni T, Youssef A. Growth perturbation, abnormalities and mortality of oriental armyworm Mythimna separata (Lepidoptera: Noctuidae) caused by silica nanoparticles and Bacillus thuringiensis toxin. Egyptian J biol pest control, 2014; 24(2): 283-287.
12. Yun JH, Roh SW, Whon TW, Jung MJ, Kim MS, Park DS, Yoon C, Nam YD, Kim YJ, Choi H. Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host. Appl Environ Microbiol., 2014; 80: 5254–5264.
13. Wang Y, Gilbreath TM, Kukutla P, Yan G, Xu J. Dynamic gut microbiome across life history of the malaria mosquito Anopheles gambiae in Kenya. PLoS One, 2011; 6: e24767.
14. Colman DR, Toolson EC, Takacs‐Vesbach C. Do diet and taxonomy influence insect gut bacterial communities? Molec ecol., 2012; 21: 5124-5137.
15. Genta FA, Dillon RJ, Terra WR, Ferreira C. Potential role for gut microbiota in cell wall digestion and glucoside detoxification in Tenebrio molitor larvae. J Insect Physiol., 2006; 52(6): 593-601.
16. Mazumdar T, Teh BS, Boland W. The microbiome of Spodoptera littoralis: development, control and adaptation to the insect host. Metagenomics for Gut Microbes, IntechOpen, India., 2018; 77-103.
17. Oliver KM, Russell JA, Moran NA, Hunter MS. Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proceedings of the National Academy of Sciences of the United States of America, 2003; 100(4): 1803-1807.
18. Kroiss J, Kaltenpoth M, Schneider B, Schwinger MG, Hertweck C, Maddula RK. Symbiotic Streptomycetes provide antibiotic combination prophylaxis for wasp offspring. Nature Chem Biol., 2010; 6(4): 261-263.
19. McLaren MR, Callahan BJ. Pathogen resistance may be the principal evolutionary advantage provided by the microbiome. Philosophical Transactions of the Royal Society B, 2020; 375(1808): p.20190592.
20. Thiery I, Frachon E. Identification, isolation, culture and preservation of entomopathogenic bacteria. In Manual of techniques in insect pathology, Academic Press. L. A. Lacey (Ed.): Manual of Techniques in Insect Pathology Academic Press, London, 1997; 55-77.
21. Yaman M, Erturk O, Unal S, Selek F. Isolation and identification of bacteria from four important poplar pests. Revista Colomb de Entomol., 2017; 43(1): 34-37.
22. Elkhateeb WA, Zohri AA, Mazen MB, Hashem M, Daba GM. Investigation of diversity of endophytic, phylloplane and phyllosphere mycobiota isolated from different cultivated plants in new reclaimed soil, Upper Egypt with potential biological applications. J Med Pharm Rese., 2016; 2(1):23-31.
23. Kuzina LV, Peloquin JJ, Vacek DC, Miller TA. Isolation and identification of bacteria associated with adult laboratory Mexican fruit flies, Anastrepha ludens (Diptera: Tephritidae). Curr Microbiol., 2001; 42(4): 290-294.
24. Bartholomew JW, Mittwer T. The gram stain. Bacteriol rev., 1952; 16(1): p.1.
25. Tanasupawat S, Okada S, Komagata K. Lactic acid bacteria found in fermented fish in Thailand. J Gen Appl Microbiol., 1998; 44: 193-200.
26. Holding AJ, Collee JG. Chapter I Routine biochemical tests. In Methods in microbiology (Vol. 6, pp. 1-32). Academic Press, 1971.
27. Domsch KH, Gams W, Anderson Traute-Heidi. Compendium of soil fungi. Vol. 1 & 11. Acad. Press, London (1980).
28. Moubasher AH. Soil Fungi in Qatar and Other Arab Countries. The Scientific and Applied Research Centre, University of Qatar, Doha, Qatar (566), 1993.
29. Feldhaar H. Bacterial symbionts as mediators of ecologically important traits of insect hosts. Ecol Entomol., 2011; 36: 533-543.
30. Kaufman MG, Walker ED, Odelson DA, Klug MJ. Microbial community ecology & insect nutrition. American Entomol., 2000; 46: 173-185.
31. Montllor CB, Maxmen A, Purcell AH. Facultative bacterial endosymbionts benefit pea aphids Acyrthosiphon pisum under heat stress. Ecol Entomol., 2002; 27: 189-195.
32. Dunbar HE, Wilson AC, Ferguson NR, Moran NA. Aphid thermal tolerance is governed by a point mutation in bacterial symbionts. PLoS Bio., 2007; l5:e96.
33. Oliver KM, Smith AH, Russell JA. Defensive symbiosis in the real world–advancing ecological studies of heritable, protective bacteria in aphids and beyond. Functional ecol., 2014; 28: 341-355.
34. El-Sheikh T, Rafea H, El-Aasar A, Ali S. Biochemical studies of Bacillus thuringiensis var. kurstaki, Serratia marcescns and Teflubenzuron on cotton leafworm, Spodoptera littoralis (Boisd.)(Lepidoptea: Noctuidae). Egypt Acad J Bio Sci., 2013; 5:19-30.
35. Dillon RJ, Dillon V. The gut bacteria of insects: nonpathogenic interactions. Ann Rev Entomol., 2004; 49: 71-92.
36. Morrison M, Pope PB, Denman SE, McSweeney CS. Plant biomass degradation by gut microbiomes: more of the same or something new? Curr Opin Biotechnol., 2009; 20: 358-363.
37. Tang X, Freitak D, Vogel H, Ping L, Shao Y, Cordero EA, Andersen G, Westermann M, Heckel DG, Boland W. Complexity and variability of gut commensal microbiota in polyphagous lepidopteran larvae. PloS One, 2012; 7:e36978.
38. Montagna M, Chouaia B, Mazza G, Prosdocimi EM, Crotti E, Mereghetti V, Vacchini V, Giorgi A, De Biase A, Longo S. Effects of the diet on the microbiota of the red palm weevil (Coleoptera: Dryophthoridae). PloS one 2015; 10: e0117439.
39. Himler AG, Adachi-Hagimori T, Bergen JE, Kozuch A, Kelly SE, Tabashnik BE, Chiel E, Duckworth VE, Dennehy TJ, Zchori-Fein E. Rapid spread of a bacterial symbiont in an invasive whitefly is driven by fitness benefits and female bias. Sci., 2011; 332: 254-256.
40. Jaenike J, Unckless R, Cockburn SN, Boelio LM, Perlman SJ. Adaptation via symbiosis: recent spread of a Drosophila defensive symbiont. Sci, 2010; 329: 212-215.
41. Ertürk Ö, Yaman M, Aslan I.. Effects of four Bacillus spp. of soil origin on the Colorado potato beetle Leptinotarsa decemlineata (Say). Entomol Res., 2008; 38: 135-138.
42. Yaman M, Demirbağ Z. Isolation, identification and determination of insecticidal activity of two insect-originated Bacillus spp. Biológia (Bratislava) 2000; 55: 283-287.
43. Vilanova C, Baixeras J, Latorre A, Porcar M. The generalist inside the specialist: gut bacterial communities of two insect species feeding on toxic plants are dominated by Enterococcus sp. Front in microbiol., 2016; 7: 1005.
44. Sittenfeld A, Uribe-Lorío L, Mora M, Nielsen V, Arrieta G, Janzen D. Does a polyphagous caterpillar have the same gut microbiota when feeding on different species of food plants? Revista de Biol Tropic., 2002; 50: 547-560.
45. Yaman M, Ertürk Ö, Aslan I. Isolation of some pathogenic bacteria from the great spruce bark beetle, Dendroctonus micans and its specific predator, Rhizophagus grandis. Folia Microbiol., 2010; 55: 35-38.
46. Sezen K, Yaman M, Demırbağ Z.. Insecticidal potential of Serratia marcescens Bn10. Biologia (Bratislava) 2001; 56: 333-336.
47. Sikorowski P, Lawrence A, Inglis G. Effects of Serratia marcescens on rearing of the tobacco budworm (Lepidoptera: Noctuidae). American Entomol., 2001; 47: 51-60.
48. Lauzon CR, Bussert TG, Sjogren RE, Prokopy RJ. Serratia marcescens as a bacterial pathogen of Rhagoletis pomonella flies (Diptera: Tephritidae). EJE., 2013; 100: 87-92.
49. Paine T, Raffa K, Harrington T. Interactions among scolytid bark beetles, their associated fungi, and live host conifers. Ann rev entomol., 1997; 42: 179-206.
50. Zoberi MH, Grace JK. Fungi associated with the subterranean termite Reticulitermes flavipes in Ontario. Mycol., 1990; 82: 289-294.
51. Jankevica L. Ecological associations between entomopathogenic fungi and pest insects recorded in Latvia. Latvijas entomol., 2004; 41: 60-65.
52. Hajek A and St. Leger R.. Interactions between fungal pathogens and insect hosts. Ann Rev Entomol., 1994; 39: 293-322.
53. Assaf LH, Haleem RA, Abdullah SK. Association of entomopathogenic and other opportunistic fungi with insects in dormant locations. J Biological Sci., 2011; 147(620): 1-6.
54. Mahdavi V, Saber M, Rafiee-Dastjerdi H, Mehrvar A. Susceptibility of the hymenopteran parasitoid, Habrobracon hebetor (Say)(Braconidae) to the entomopathogenic fungi Beauveria bassiana Vuillemin and Metarhizium anisopliae Sorokin. J Biological Sci., 2013; 6(1): 17-20.
55. Eidy M, Rafiee-Dastjerdi H, Zargarzadeh F, Golizadeh A, Mahdavi V. Pathogenicity of the Entomopathogenic Fungi Beauveria bassiana (Balsamo) and Verticillium lecanii (Zimmerman) against aphid Macrosiphum rosae, Linnaeus (Hemiptera: Aphididae) under laboratory conditions. J Biological Sci., 2016; 147(3384): 1-4.
56. Baron NC, Rigobelo EC, Zied DC. Filamentous fungi in biological control: current status and future perspectives. Chilean J agricul res., 2019; 79(2): 307-315.
57. de Faria MR, Wraight SP. Mycoinsecticides and mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types. Biol cont., 2007; 43: 237-256.
58. Skinner M, Parker BL, Kim JS. Role of entomopathogenic fungi in integrated pest management. In Integrated pest management (Elsevier), 2014; 169-191.
59. El-Hawary M. Laboratory bioassay of some entomopathogenic fungi on Spodoptera littoralis (Boisd.) and Agrotis ipsilon (Hufn.) larvae (Lepidoptera: Noctuidae). Egypt Acad J biolog Sci., 2019; 1(1): 1- 6.
60. Shakeri J, Foster HA. Proteolytic activity and antibiotic production by Trichoderma harzianum in relation to pathogenicity to insects. Enzyme and Microbial Technol., 2007; 40: 961-968.
61. Altre J, Vandenberg J. Penetration of cuticle and proliferation in hemolymph by Paecilomyces fumosoroseus isolates that differ in virulence against lepidopteran larvae. J Invert Pathol., 2001; 78: 81-86.
62. Lillehoj E, McMillian W, Widstrom N, Guthrie W, Jarvis J, Barry D, Kwolek W. Aflatoxin contamination of maize kernels before harvest. Mycopathol., 1984; 8: 77-81.
63. Guthrie W, Lillehoj E, Barry D, McMillian W, Kwolek W, Franz A, Catalano E, Russell W, Widstrom N. Aflatoxin contamination of preharvest corn: Interaction of European corn borer larvae and Aspergillus flavus-group isolates. J Econ Entomol., 1982; 75: 265-269.
64. Lillehoj E, Mc Millian W, Guthrie W, Barry D. Aflatoxin‐producing fungi in preharvest corn: inoculum source in insects and soils. J Environm Qual., 1980; 9: 691-694.
65. Kaczmarek M, Struszczyk-Świta K, Florczak T, Szczęsna-Antczak M, Antczak T. Isolation, molecular cloning and characterisation of two genes coding chitin deacetylase from Mucor circinelloides IBT-83. Progress on Chemistry and Application of Chitin and its Derivatives, 2016; 21: 93-103.
66. Dahi HF, Abdel-Rahman A, El-Bamby M, Gamil WE, Rasheed DS. Insecticides Application and the Egyptian Cotton Leafworm, Spodoptera littoralis (Boisd.) Permanent Larvae. Egypt Acad J Biol Sci. Entomol., 2017; 10(7): 311-322.
67. Sunny NE, Kumar SR, Kumar SV. A Review on Chitinase Synthesis from varied sources and its Applications towards Environment. Research Journal of Pharmacy and Technology, 2018; 11(9): 4200-4208.
68. Qamandar MA, Shafeeq MA. Possible Mosquito Control by Silver Nanoparticles Synthesized by Entomopathogenic Fungus Beauveria bassiana. Research Journal of Pharmacy and Technology 2018; 11(3): 1058-1064.
69. Daba GM, Elkhateeb W, ELDien AN, Fadl E, Elhagrasi A, Fayad W, Wen TC. Therapeutic potentials of n-hexane extracts of the three medicinal mushrooms regarding their anti-colon cancer, antioxidant, and hypocholesterolemic capabilities. Biodiversitas Journal of Biological Diversity 2020; 21(6).
70. El-Hagrassi A, Daba G, Elkhateeb WA, Ahmed EF, Negm El-Dein A, Fayad W, Shaheen M, Shehata R, El-Manawaty M, Wen T-C. In vitro bioactive potential and chemical analysis of the n-hexane extract of the medicinal mushroom, Cordyceps militaris. Malaysian J Microbiol., 2020; 16(1) 40-48.
71. Elkhateeb WA, Mousa KM, Elnahas MO, Daba GM. Fungi against insects and contrariwise as biological control models. Egyptian Journal of Biological Pest Control, 2021; 31.1: 1-9.
72. Khatua S, Snigdha P, Krishnendu A. Mushroom as the potential source of new generation of antioxidant: a review. Research Journal of Pharmacy and Technology 6, 5(2013): 3.
73. Dharmesh S, Deepak P, Ruchika C, Madhu C, Neha J, Sanjay S. World of Medicinal Mushroom-An Overview. Research J. Pharmacognosy and Phytochemistry 2012; 4(1): 39-43.
74. Panchawat S. Mushroom: A Review. Research Journal Science and Technology 2012; 4(6): 243-251.
75. Neha J, Bharat P. Medicinal mushrooms: A blessing for mankind. Asian Journal Research Pharm. Sci. 2012; 2(1): 12-15.
76. Amit R, Pushpa P. Properties and uses of an Indigenous Mushroom: Calocybe indica. Asian Journal of Pharmacy and Technology 2014; 4(1): 17-21.
77. Krishnaveni M, Manikandan M. Antimicrobial Activity of Mushrooms. Research J. Pharm. and Tech. 2014; 7(4): 399-400.
78. Waill A Elkhateeb, Mohamed A Mohamed, Walid Fayad, Mahmoud Emam, Ibrahim M Nafady, Ghoson M Daba. Molecular Identification, Metabolites profiling, Anti-breast cancer, Anti-colorectal cancer, and antioxidant potentials of Streptomyces zaomyceticus AA1 isolated from a remote bat cave in Egypt. Research J. Pharm. and Tech. 2020; 13(7): 3072-3080.
79. Uma Maheswari Kolipaka, G Girija Sankar. Studies on Antimicrobial activity of a metabolite produced by Streptomyces malaysiensis isolated from Termite Mound Soil. Research J. Pharm. and Tech. 2019; 12(5): 2175-2181.