Author(s): Shreyas Rajeswar, Narasimhan S

Email(s): narasimhan.s@manipal.edu

DOI: 10.52711/0974-360X.2021.01069   

Address: Shreyas Rajeswar, Narasimhan S*
Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104 India.
*Corresponding Author

Published In:   Volume - 14,      Issue - 11,     Year - 2021


ABSTRACT:
Drought is one of the most commonly faced significant factors that impede plant productivity and growth. Especially in the context of agriculture, crop productivity and sustainable farming are most adversely affected by water shortage conditions caused by drought. Plants have several adaptations to respond to such conditions, both physiological as well as metabolic. An understanding of these adaptations is essential to develop a biotechnological solution to the problem of drought-related crop losses across the globe. This review addresses the various changes that plants undergo when subjected PEG (Polyethylene glycol). Various drought stress markers are associated with PEG induced stress are expressed in the biochemistry, physiology, photosynthesis and metabolism of the plant. Therefore PEG treatment in plants are considered as an effective model for drought stress investigation.


Cite this article:
Shreyas Rajeswar, Narasimhan S. PEG-induced Drought Stress in Plants: A Review. Research Journal of Pharmacy and Technology. 2021; 14(11):6173-8. doi: 10.52711/0974-360X.2021.01069

Cite(Electronic):
Shreyas Rajeswar, Narasimhan S. PEG-induced Drought Stress in Plants: A Review. Research Journal of Pharmacy and Technology. 2021; 14(11):6173-8. doi: 10.52711/0974-360X.2021.01069   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2021-14-11-94


REFERENCES:
1    Siddappa N, Devaraj V R.  Quantitative Analysis of Polyamines in Paspalum scrobiculatum under Drought and Salt Stress Asian Journal of Research in Chemistry, 2014; 7:933-939.  
2    Basu S, Ramegowda V, Kumar A, Pereira A. Plant adaptation to drought stress,  F1000 Research, 2016; 5:1554 DOI: 10.12688/f1000research.7678.1
3    Trenberth KE, Dai A, van der Schrier, G, Jones PD., BarichivichJ, Briffa KR, Sheffield J. Global warming and changes in drought, Nature Climate Change, 2014;. 4: 17–22. DOI: 10.1038/nclimate2067
4    Verslues E, Agarwal M, Katiyar-Agarwal S, Zhu J. Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status, The Plant Journal, 2006; 45: 523–539. DOI: 10.1111/j.1365-313X.2005.02593.x
5    Deikman J, Petracek M, Heard JE. Drought tolerance through biotechnology: Improving translation from the laboratory to farmers’ fields, Current Opinion in Biotechnology, 2012; 23: 243–250. DOI: 10.1016/j.copbio.2011.11.003
6    Harb A, Krishnan A, Ambavaram MMR, Pereira A. Molecular and physiological analysis of drought stress in Arabidopsis reveals early responses leading to acclimation in plant growth, Plant Physiology, 2010; 154: 1254–1271. DOI: 10.1104/pp.110.161752
7    Wang X, Cai X, Xu C, Wang Q Dai S. Drought-responsive mechanisms in plant leaves revealed by proteomics, International Journal of Molecular Sciences, 2016; 17: 1706. DOI:10.3390/ijms17101706
8    Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA. Plant drought stress: effects, mechanisms and management, In: Lichtfouse E., Navarrete M., Debaeke P., Véronique S., Alberola C. (eds) Sustainable Agriculture. Springer, Dordrecht, 2009.  DOI; 10.1007/978-90-481-2666-8_1
9    Kar RK. Plant responses to water stress: Role of reactive oxygen species, Plant Signal. Behavior, 2011; 6: 1741–1745. DOI: 10.4161/psb.6.11.17729
10    Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants, Plant Physiology and Biochemistry, 2010; 48: 909–930. DOI: 10.1016/j.plaphy.2010.08.016
11    Anjum SA, Xie X, Wang L, Saleem MF, Man C, Lei W. Morphological physiological and biochemical responses of plants to drought stress, African journal of agricultural research 2015; 6: 2026-2032. DOI: 10.5897/AJAR10.027
12    Prestrelski SJ, Tedeschi N, Arakawa T, Carpenter JF. Dehydration induced conformational transitions in proteins and their inhibition by stabilizers, Biophysical journal, 1993, 65: 661–671. OI:10.1016/S0006-3495(93)81120-2
13    Van der Weele CM, Spollen WG, Sharp RE, Baskin TI. Growth of Arabidopsis thaliana seedlings under water deficit studied by control of water potential in nutrient-agar media, Journal of Experimental Botany, 2000; 1: 1555–1562. DOI: 10.1093/jexbot/51.350.1555
14    Boyer JS, Kramer PJ. Water Relations of Plants and Soils, Academic Press Inc., Waltham, MA, USA, ISBN 9780124250604, 1995.
15    Haswell ES, Verslues PE. The ongoing search for the molecular basis of plant osmosensing, Journal of General Physiology, 2015, 145: 389–394. DOI: 10.1085/jgp.201411295
16    Razmkhah H. Comparing threshold level methods in development of stream flow drought severity-duration-frequency curves, Water Resource. Management, 2017, 31: 4045–4061. DOI: 10.1007/s11269-017-1587-8
17    Zhang Q. Strategies for developing Green Super Rice, Proceedings of the National Academy of Sciences, 2007, 104: 16402–16409. DOI: 10.1073/pnas.0708013104
18    Muller B, Pantin F, Génard M, Turc O, Freixes S, Piques M, Gibon Y. Water deficits uncouple growth from photosynthesis, increase C content, and modify the relationships between C and growth in sink organs, Journal of Experimental Botany, 2011; 62: 1715–1729. DOI:  10.1093/jxb/erq438
19    Kaufmann MR, Eckard AN.  Evaluation of Water Stress Control with Polyethylene Glycols by Analysis of Guttation.  Plant Physiology, 1971; 47:-456.
20    Oertli JJ. The response of plant cells to different forms of moisture stress, Journal of Plant Physiology, 1985. 121: 295-300. DOI: 10.1016/S0176-1617(85)80022-5
21    Evered C, Majevadia B, Thompson DS.  Cell wall water content has a direct effect on extensibility in growing hypocotyls of sunflower (Helianthus annuus L.), Journal of Experimental Botany, 2007; 58:3361–3371. DOI:10.1093/jxb/erm183
22    Hohl M, Schopfer P. Water relations of growing maize coleoptiles: comparison between mannitol and polyethylene glycol 6000 as external osmotica for adjusting turgor pressure, Plant Physiology, 1991; 95: 716–722. DOI: 10.1104/pp.95.3.716
23    Ibrahim KM, Musbah HM. Increasing poly phenols in Coleus blumei at the cellular and intact plant levels using PEG stress. Research Journal of Pharmacy and Technology, 2018; 11: 321-327. DOI: 10.5958/0974-360X.2018.00059.8
24    Rajurkar RM, Jain RG, Bedmohta PA, Khadbadi SS. Antioxidant Activity of Phenolic Extract from Ginger (Zingiber officinale Roscoe) Rhizome. Asian Journal of Research in Chemistry. 2009; 2:260-261
25    Hemmalakshmi S, Annapurani, S, Devi GS. Comparative phytochemical screening and total phenolic content of different extracts of Ficus racemosa, Morinda tinctoria and Nerium indicum fresh leaves. Research Journal of Pharmacy and Technology, 2016; 9:2222-2227. DOI: 10.5958/0974-360X.2016.00449.2
26    Venkateshwarlu G, Santhosh A, Naik ER, Suma G, Swapana K, Pranitha D.  Traditional and folklore use of Acacia nilotica (l.) in ayurvedic system. Asian Journal of Pharmacy and Technology, 2014; 4: 98-99.
27    Rai R. Ethnobotanical studies on plants used in folk medicines in cure of Diabetes in Gondwana Region of Madhya Pradesh. Asian Journal of Pharmaceutical Research, 2016; 6: 72-78.
28    Tariq NPMM, Ifham SMR. Ethnobotanical survey of medicinal plants in Yelagiri Hills of Tamil Nadu. Research Journal of Pharmacy and Technology, 2013; 6: 652-654. DOI: 10.5958/0974-360X
29    Meena AK, Rao MM, Meena RP, Panda P, Renu. Pharmacological and phytochemical evidences for the plants of Wedelia genus– A Review. Asian Journal of Pharmaceutical Research, 2011; 1:07-12.
30    Mariyappan M, Bharathidasan R, Mahalingam R, Madhanraj P, Panneerselvam A, Ambikapathy V. Antibacterial activity of Cardiospermum halicacabum and Melothria heterophylla. Asian Journal of Pharmaceutical Research. 2011; 1:111-113.
31    Morris SS, Jeyabalan G, Jha AK, Verma S and Swarnkar Y. Phytochemical Screening and In-vitro athelmintic activity of seed extracts of plants Carum carvi of family Apiaceae. Asian Journal of Pharmaceutical Research, 2016; 6: 246-254.
32    Menon R. Antioxidants and their therapeutic Potential- A review. Research Journal of Pharmacy and Technology, 2013; 6: 426-1429.  DOI: 10.5958/0974-360X
33    Shivhare Y, Singh P, Gadekar R, Soni P. Botanicals as antioxidants: A renovate review. Research Journal of Pharmacognosy and Phytochemistry 2010; 2: 255-259.
34    Todaka D, Zhao Y, Yoshida T, Kudo M, Kidokoro S, Mizoi J, Kodaira KS, Takebayashi , Kojima M, Sakakibara H.  Temporal and spatial changes in gene expression, metabolite accumulation and phytohormone content in rice seedlings grown under drought stress conditions, Plant Journal, 2017; 90: 61–78. DOI: 10.1111/tpj.13468
35    Osmolovskaya N, Shumilina J, Kim A, Didio A, Grishina T, Bilova T, Keltsieva OA, Zhukov V, Tikhonovich I, Tarakhovskaya E, Frolov A, Wessjohann LA. Methodology of drought stress research: experimental setup and physiological characterization. International Journal of Molecular Sciences, 2018; 19:4089. doi: 10.3390/ijms19124089.
36    Bressan RA, Hasegawa PM, Handa AK.  Resistance of cultured higher plant cells to polyethylene glycol-induced water stress, Plant Science Letters, 1981, 21: 23–30. DOI: 10.1016/0304-4211(81)90065-1
37    Sardare MD, Admane SV. A review on plant without soil, International Journal of Research in Engineering and Technology,  2013; 2: 299–304. DOI: 10.15623/ijret.2013.0203013
38    Jacomini E, Bertani A, Mapelli S. Accumulation of polyethylene glycol 6000 and its effects on water content and carbohydrate level in water-stressed tomato plants, Canadian Journal of Botany, 1988; 66: 970–973. DOI: 10.1139/b88-140 DOI: 10.1139/b88-140
39    Meher, Shivakrishna P, Reddy KA, Rao DM.  Effect of PEG-6000 imposed drought stress on RNA content, relative water content (RWC), and chlorophyll content in peanut leaves and roots, Saudi Journal of Biological Sciences, 2018, 25: 285–289.
40    Liu J, Yang H, Gosling SN, Kummu M, Flörke M, Pfister S, Hanasaki N, Wada, Y, Zhang X, Zheng C. Water scarcity assessments in the past, present, and future: review of water scarcity assessment, Earth’s Future. 2017, 5: 545–559. DOI: 10.1002/2016EF000518
41    Simon C, Brad H, Maclin D, Bo X, Asmini A, Sam H, Lucy A, Vanessa C, Monique S, Sigfredo F. Protocol: Optimising hydroponic growth systems for nutritional and physiological analysis of Arabidopsis thaliana and other plants, Plant Methods, 2013; 9: 4. DOI: 10.1186/1746-4811-9-4  
42    Tardieu F. Drought perception by plants: do cells of drought plants experience water stress? Plant Growth Regulation, 1996; 20: 93–104. DOI: 10.1007/BF00024005
43    Raghavendra AS, Gonugunta VK, Christmann A, Grill E.  ABA perception and signalling, Trends Plant Sciences, 2010; 15: 395–401. DOI: 10.1016/j.tplants.2010.04.006
44    Bhargava S, Sawant K.  Drought stress adaptation: Metabolic adjustment and regulation of gene expression, Plant Breeding, 2013; 132: 21–32. DOI: 10.1111/pbr.12004
45    Jaleel CA, Manivannan P, Wahid A, Farooq M, Al-Juburi J, Somasundaram R, Panneerselvam R.  Drought stress in plants: A review on morphological characteristics and pigments composition International Journal of Agriculture and Biology, 2009; 11: 100-105.
46    Soltys-Kalina D, Plich J, Strzelczyk-Zyta D, Sliwka J, Marczewski W. The effect of drought stress on the leaf relative water content and tuber yield of a half-sib family of ‘Katahdin’-derived potato cultivars, Breeding Science, 2016; 66: 328–331. DOI: 10.1270/jsbbs.66.328
47    De Silva MA, Jifon JL, da Silva JAG, Sharma V. Use of physiological parameters as fast tools to screen for drought tolerance in sugarcane, Brazilian Journal of Plant Physiology, 2007; 19: 193–201. DOI: 10.1590/S1677-04202007000300003
48    Sobeih WY.  Long-distance signals regulating stomatal conductance and leaf growth in tomato (Lycopersicon esculentum) plants subjected to partial root-zone drying, Journal of Experimental Botany, 2004, 55: 2353–2363. DOI: 10.1093/jxb/erh204
49    Damour G, Simonneau T, Cochard H, Urban L. An overview of models of stomatal conductance at the leaf level: Models of stomatal conductance, Plant Cell Environ. 33: 1419–1438.
50    Burkhardt, J, Kaiser H, Goldbach H, Kappen L. Measurements of electrical leaf surface conductance reveal re-condensation of transpired water vapour on leaf surfaces, Plant Cell Environment, 2002, 22: 189–196. DOI: 10.1046/j.1365-3040.1999.00387.x
51    Dbira S, Al Hassan M, Gramazio P, Ferchichi A, Vicente O, Prohens J, Boscaiu M.  Variable levels of tolerance to water stress (drought) and associated biochemical markers in Tunisian barley landraces, Molecules. 20418; 23: 613. DOI: 10.3390/molecules23030613
52    Fathi A, Tari DB.  Effect of drought stress and its mechanism in plants, International Journal of Life Sciences.  2016; 10: 1–6. DOI: 10.3126/ijls.v10i1.14509
53    Chen YE, Liu WJ, Su YQ, Cui JM, Zhang ZW, Yuan M, Zhang HY, Yuan S. Different responses of photosystem II to short and long-term drought stress in Arabidopsis thaliana, Physiol Plant, 2016; 158: 225–235.
54    Guerriero G, Berni R, Muñoz-Sanchez JA, Apone F, Abdel-Salam EM, Qahtan AA, Alatar AA, Cantini C, Cai G, Hausman JF, Siddiqui KS, Hernández-Sotomayor SMT, Faisal M.  Production of Plant Secondary Metabolites: Examples, Tips and Suggestions for Biotechnologists, Genes. 2018; 9: 309. DOI: 10.3390/genes9060309
55    Narasimha, S., Nair GM. Effect of auxins on berberine synthesis in cell suspension culture of Coscinium fenestratum (Gaertn.) Colebr—A critically endangered medicinal liana of Western Ghats, Indian Journal of Experimental Biology. 2004; 42: 616-619.
56    Narasimhan S, Nair GM.  Release of berberine and its crystallization in liquid medium of cell suspension cultures of Coscinium fenestratum (Gaertn.) Colebr, Current Science, 2004;  86: 1369-1371.
57    Babu VS, Narasimhan S, Nair GM. Enhanced accumulation of triterpenoids and flavonoids in cell suspension cultures of Azadirachta indica (A. Juss.) with an extended stationary phase, Indian Journal of Biotechnology, 2008; 7:270-272.
58    Narasimhan S.  Trichome structure of Coscinium fenestratum (Gaertn.) Colebr., a critically endangered medicinal liana suggests a role in defence mechanism, Medicinal Plants-International Journal of Phytomedicines and Related Industries. 10: DOI: 151-154. 10.5958/0975-6892.2018.00024.2
59    Narasimhan, S., (2019). Ultrastructural and histochemical analysis of the trichomes of Cyclea peltata (Menispermaceae) Medicinal Plants, International Journal of Phytomedicines and Related Industries. 11: 422-426. DOI : 10.5958/0975-6892.2019.00055.8
60    Paudel G, Bilova T, Schmidt R, Greifenhagen U, Berger R, Tarakhovskaya E, Stöckhardt S, Balcke GU, Humbeck K, Brandt W.  Changes in Arabidopsis thaliana advanced glycated proteome induced by the polyethylene glycol-related osmotic stress, Journal of Experimental Botany, 2016; 67: 6283–6295. DOI: 10.1093/jxb/erw395
61    Krasensky J, Jonak C. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks, Journal of Experimental Botany , 2012, 63: 1593–1608. DOI: 10.1093/jxb/err460
62    Birkemeyer C, Osmolovskaya N, Kuchaeva L, Tarakhovskaya E. Distribution of natural ingredients suggests a complex network of metabolic transport between source and sink tissues in the brown alga Fucus vesiculosus, Planta, 2019; 249:377-391. DOI: 10.1007/s00425-018-3009-4
63    Milkovska-Stamenova S, Schmidt R, Frolov A, Birkemeyer C. GC-MS method for the quantitation of carbohydrate intermediates in glycation systems, Journal of Agricultural and Food Chemistry, 2015; 63: 5911–5919.
64    Tarakhovskaya E, Lemesheva V, Bilova T, Birkemeyer C. Early embryogenesis of brown alga Fucus vesiculosus L. is characterized by significant changes in carbon and energy metabolism, Molecules, 2017; 22: 1509. DOI: 10.3390/molecules22091509
65    Ghasemzadeh A, Jaafar HZ, Rahmat A. Synthesis of phenolics and flavonoids in ginger and their effects on photosynthesis rate, International Journal of Molecular Sciences, 2010; 11: 4539–4555. DOI: 10.3390/ijms11114539
66    Ma D, Sun D, Wang C, Li Y, Guo T. Expression of flavonoid biosynthesis genes and accumulation of flavonoid in wheat leaves in response to drought stress, Plant Physiology and Biochemistry, 80: 60–66. DOI: 10.1016/j.plaphy.2014.03.024
67    Cruz de Carvalho, MH. Drought stress and reactive oxygen species: Production, scavenging and signalling, Plant Signalling and  Behavior, 2008, 3: 156–165. DOI: 10.4161/psb.3.3.5536
68    Møller IM, Jensen PE, Hansson A.  Oxidative modifications to cellular components in plants, Annual review of plant biology, 2007; 58: 459–481.
69    Bechtold U, Rabbani N, Mullineaux PM, Thornalley PJ. Quantitative measurement of specific biomarkers for protein oxidation, nitration and glycation in Arabidopsis leaves, Plant Journal, 2009, 59: 661–671. DOI: 10.1111/j.1365-313X.2009.03898.x.
70    Bilova T, Lukasheva E, Brauch D, Greifenhagen U, Paudel G, Tarakhovskaya E, Frolova N, Mittasch J, Balcke GU, Tissier A, Osmolovskaya N, Vogt T, Wessjohann LA, Birkemeyer C, Milkowski C, Frolov A A snapshot of the plant glycated proteome: Structural, functional, and mechanistic aspects, Journal of Biological Chemistry,  2016; 291: 7621–7636. DOI: 10.1074/jbc.M115.678581
71    Templer SE, Ammon A, Pscheidt D, Ciobotea O, Schuy C, McCollum C, Sonnewald U, Hanemann A, Förster J, Ordon F, von Korff M, Voll LM.  Metabolite profiling of barley flag leaves under drought and combined heat and drought stress reveals metabolic QTLs for metabolites associated with antioxidant defense, Journal of Experimental Botany, 2017; 68: 1697–1713.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available