Author(s): Wissam Zam, Ali Ali, Dimah Saleem, Sahar Alali

Email(s): ws.sarah2005@gmail.com

DOI: 10.52711/0974-360X.2021.01116   

Address: Wissam Zam1*, Ali Ali2, Dimah Saleem2, Sahar Alali3
1Department of Analytical and Food Chemistry, Faculty of Pharmacy, Al-Wadi International University, Homs, Syria.
2Department of Food Technology, Faculty of Technical Engineering, Tartous University, Tartous, Syria.
3Department of Industrial automatic Technology, Faculty of Technical Engineering, Tartous University, Tartous Syria.
*Corresponding Author

Published In:   Volume - 14,      Issue - 12,     Year - 2021


ABSTRACT:
In recent years, Centaurium erythraea extracts have attracted much research attention in the context of prevention or treatment of many diseases due to its bioactive compounds content and antioxidant activity. The antioxidants of C. erythraea are very effective as they possess excellent antioxidant activity. Thus, it can be used as a safe and natural food preservative. The aim of this study is to make extracts more effective by optimizing the extraction conditions of the phenolics and antioxidants from C. erythraea using response surface methodology (RSM) based on a central composite design (CCD). Two process variables (Methanol volume fraction and solid - solvent ratio) were evaluated at five levels (13 experimental designs). Multiple regression analyses were performed to obtain quadratic polynomial equations using RSM; each response was fitted by a quadratic model. The adequacy of the models was proven using the analysis of variance (ANOVA). The significant effects of the factors and their interactions on the extraction efficiency were investigated at 95% confidence interval. RSM indicated that the optimal extraction conditions were 71% methanol volume fraction and 2.2:10 solid:solvent ratio. Predicted values thus obtained were close to the experimental values indicating suitability of the model.


Cite this article:
Wissam Zam, Ali Ali, Dimah Saleem, Sahar Alali. Optimization of phenolics and antioxidants extraction from Centaurium erythraea using response surface methodology. Research Journal of Pharmacy and Technology. 2021; 14(12):6455-2. doi: 10.52711/0974-360X.2021.01116

Cite(Electronic):
Wissam Zam, Ali Ali, Dimah Saleem, Sahar Alali. Optimization of phenolics and antioxidants extraction from Centaurium erythraea using response surface methodology. Research Journal of Pharmacy and Technology. 2021; 14(12):6455-2. doi: 10.52711/0974-360X.2021.01116   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2021-14-12-46


REFERENCES:
1.    Sindhi V, Gupta V, Sharma K, Bhatnagar S, Kumari R and Dhaka N. Potential applications of antioxidants - A review. Int Res J Pharm. 2013; 7(9): 828-835.
2.    Joshi H, Pagare M, Patil L, Kadam V. In–Vitro Antioxidant Activity of Ethanolic Extract of Leaves of Buchanania Lanzan Spreng. Research J Pharm and Tech. 2011; 4(6): 920-924.
3.    BarlowS and Schlatter J. Risk assessment of carcinogens in food. Toxicol Appl Pharmacol. 2010; 243(2):180–190.
4.    Yang X, Yan F, Huang S and Fu C. Antioxidant activities of fractions from longan pericarps. Food Sci Technol. 2014; 34(2): 341–345.
5.    Kosar M, Demirci B, Demirci F and Baser KHC. Effect of maturation on the composition and biological activity of the essential oil of a commercially important Satureja Species from Turkey Satureja cuneifolia Ten. (Lamiaceae). J Agric Food Chem. 2008;56(6): 2260–2265.
6.    Grieve M. A Modern Herbal. Vol 1. Dover Publications, New York. 1971: p. 443.
7.    Cunha AP, Silva AP and O. Roque. Plantas e Produtos Vegetais em Fitoterapia. Fundação Calouste Gulbenkian, Lisboa. 2003: p. 216–334.
8.    Council of Europe, European Pharmacopoeia. 2008. 6th Edition: p.4074.
9.    Grünwald J, Brendler T and Jaenicke C. PDR (Physicians’ Desk Reference) for Herbal Medicines. Medical Economics Company, Montvale. 2000: p. 174–175.
10.    Šiler B, ivkovic´S.Zˇ, Banjanac T, Cvetkovic´J, ivkovic JN, Ćirić A, Soković M and Mišić D. Centauries as underestimated food additives: Antioxidant and antimicrobial potential. Food Chem. 2014;147: 367–376.
11.    Jovanoviš O, Raduloviš N, Stojanoviš G, Palić R, Zlatković B and Gudžić B. Chemical Composition of the Essential Oil of Centaurium erythraea Rafn (Gentianaceae) From Serbia. J Essent Oil Res. 2009; 21(4) : 317–322.
12.    Jerkoviš I, Gašo-Sokač D, Pavloviš H, Marijanović Z, Gugić M, Petrović I and Kovač S. Volatile Organic Compounds from Centaurium erythraea Rafn (Croatia) and the Antimicrobial Potential of Its Essential Oil. Molecules. 2012;17(2):2058–2072.
13.    Valentão P, Fernandes E, Carvalho F, Andrade PB, Seabra RM and Bastos ML. Antioxidant activity of Centaurium erythraea infusion evidenced by its superoxide radical scavenging and xanthine oxidase inhibitory activity. Food Chem.2001;49(7) :3476–3479.
14.    Valentão P, Andrade PB, Silva AMS, Moreira MM and Seabra RM, Isolation and structural elucidation of 5-formyl-2,3-dihydroisocoumarin from Centaurium erythraea aerial parts. Nat Prod Res. 2003; 17(5) : 361–364.
15.    Stefkov G, Miova B, Dinevska-Kjovkarovska S, Stanoeva JP, Stefova M, Petrusevska G and Kulevanova S. Chemical characterization of Centaurium erythrea L. and its effects on carbohydrate and lipid metabolism in experimental diabetes. J Ethnopharmacol. 2014;152(1) :71–77.
16.    Aberham A. Pieri V, Croom EM, Ellmerer E and Stuppner H. Analysis of iridoids, secoiridoids and xanthones in Centaurium erythraea, Frasera caroliniensis and Gentiana lutea using LC-MS and RP-HPLC. J Pharm Biomed Anal. 2011;54(3) :517–525.
17.    Božunović J, Živković S, Gašić U, Glamočlija J, Ćirić A, Matekalo D, Šiler B, Soković M, Tešić Ž and Mišić D. In vitro and in vivo transformations of Centaurium erythraea secoiridoid glucosides alternate their antioxidant and antimicrobial capacity. Ind Crops Prod. 2018;111: 705–721.
18.    Zhou Y, Jiang Z, Lu H, Xu Z, Tong R, Shi J and Jia G. Recent Advances of Natural Polyphenols Activators for Keap1-Nrf2 Signaling Pathway. Chem Biodivers. 2019;16(11) :e190040.
19.    Ganesan K and Xu B. A Critical Review on Polyphenols and Health Benefits of Black Soybeans. Nutrients. 2017;9(5): 455–472.
20.    Ncube NS, Afolayan AJ and Okoh AI. Assessment techniques of antimicrobial properties of natural compounds of plant origin current methods and future trends. Afr J Biotechnol. 2008;7(12) : 1797–1806.
21.    Spigno G, Tramelli L and De Faveri DM. Effects of extraction time, temperature and solvent on concentration and antioxidant activity of grape marc phenolics. J Food Eng. 2007;81(1) :200 –208.
22.    Yolmeh M and Jafari SM. Applications of Response Surface Methodology in the Food Industry Processes. Food Bioproc Tech. 2017;10 : 413–433.
23.    Azmir J, Zaidul ISM, Rahman MM, Sharif KM, Mohamed A, Sahena F, Jahurul M H A, Ghafoor K, Norulaini N A N and Omar A K M. Techniques for extraction of bioactive compounds from plant materials: A review. J Food Eng. 2013;117(4) :426–436.
24.    Satish K Mandlik, DS Nandare, MM Joshi, PD Chudiwal and KS Jain. Statistical Optimization of Orodispersible Tablets Containing Telmisartan Using Factorial Design and Response Surface Methodology. Research J. Pharm. and Tech. 2009;2(3): 548-551.
25.    Bansal B and Garg G. Design and Optimization of Sustained Release Tablets of Nonsteroidal Anti-inflammatory Drug. Research J. Pharm. and Tech. 2014; 7(10):1118-1127.
26.    Utharalakshmi N, Kumar AG and Narendrakumar G. Optimization of Cellulase Producing Aspergillus flavus SB4 by Solid State Fermentation using Response Surface Methodology (RSM)-CCD. Research J. Pharm. and Tech. 2015; 8(4): 349-354. doi: 10.5958/0974-360X.2015.00058.X
27.    Gopakumar A, Thomas J, Narendrakumar G and Preethi TV. Application of Response Surface Methodology (RSM) to optimize culture media for the production of rhamnolipids by Pseudomonas aeruginosa. Research J Pharm and Tech. 2016; 9(4):335-339. doi: 10.5958/0974-360X.2016.00059.7
28.    AbdulHadi M, Saleem M, Srinivasa Rao A and Rao VU. Surface Response Methodology for Development and Optimization of Aceclofenac Pulsatile Release Drug Delivery System. Asian J Pharm Tech. 2014; 4(2):74-82.
29.    Thyagarajan R, Narendrakumar G, Kumar VR and Namasivayam SKR. Comparison of Response Surface Methodology and Artificial Neural Networks for Optimization of Medium Constituents for Enhancement of phytase production from Hypocrea lixii SURT01. Research J Pharm and Tech. 2016; 9(4):430-436. doi: 10.5958/0974-360X.2016.00079.2
30.    Jangde RK, Rabsanjani and Khute S. Design and Development of Ciprofloxacin Lipid Polymer Hybrid Nanoparticle by Response Surface Methodology. Research J. Pharm. and Tech. 2020; 13(7): 3249-3256. doi: 10.5958/0974-360X.2020.00576.4
31.    Subbaiya R, Raja VV, Balachandar R, Suresh D, Chozhavendhan D, Vinoth S and Devi GK. Optimization of Process Parameters for Total Phenol Extraction from Wood Waste using Response Surface Methodology. Research J Pharm and Tech. 2019; 12(3): 1096-1104. doi: 10.5958/0974-360X.2019.00180.X
32.    Muralidharan N G and Ranjitha J. Optimization of Biodiesel Production from Dairy Waste Scum using Response Surface Methodology. Research J Pharm and Tech. 2019; 12(1): 342-346. doi: 10.5958/0974-360X.2019.00062.3
33.    Bezerra MA, Santelli RE, Oliveira EP, Villar LS and Escaleir LA. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta. 2008;76(5) : 965–977.
34.    Skerget M, Kotnik P, Hadolin M, Hraš AR, Simonič M and Knez Ž. Phenols, proanthocyanidins, flavones and flavonols in some plant materials and their antioxidant activities. Food Chem. 2005;89(2) : 191–198.
35.    Brand-Williams W, Cuvelier ME and Berset C. Use of free radical method to evaluate antioxidant activity. Lebensm Wiss Technol. 1995;28(1) : 25-30.
36.    Derringer G and Suich R. Simultaneous optimization of several response variables. J Qual Technol. 1980;12(4) : 214–219.
37.    Abid S, Messadi R, Hassine T, Ben Daly H, Soulestin J and Lacrampe M F. Optimization of mechanical properties of printed acrylonitrile butadiene styrene using RSM design. Int J Adv Manuf Technol. 2019;100 : 1363–1372.
38.    Bouyahya A, Bakri Y, Belmehdi O, Et-Touys A, Abrini J and Dakka N. Phenolic extracts of Centaurium erythraea with novel antiradical,antibacterial and antileishmanial activities. Asian Pac J Trop Dis. 2017;7(7) : 433–439.
39.    Đorđević M, Mihailović M, Jovanović JA, Grdović N, Uskoković A, Tolić A, Sinadinović M, Rajić J, Mišić D, Šiler B, Poznanović G , Vidaković M and Dinić S. Centaurium erythraea methanol extract protects red blood cells from oxidative damage in streptozotocin-induced diabetic rats. J Ethnopharmacol. 2017;202 : 172-18.
40.    Iloki-Assanga SB, Lewis-Luján LM, Lara-Espinoza CL, Gil-Salido AA, Fernandez-Angulo D, Rubio-Pino J L and Haines D. Solvent effects on phytochemical constituent profiles and antioxidant activities, using four different extraction formulations for analysis of Bucida buceras L. and Phoradendron californicum. BMC Res Notes. 2015;8(1) : 396–410.
41.    Sultana B, Anwar F and Ashraf M. Effect of extraction solvent/ technique on the antioxidant activity of selected medicinal plant extracts. Molecules. 2009;14(6) : 2167–2180.
42.    Majeed M, Hussain AI, Chatha SAS, Khosa M, Kamal G, Kamal M A, Zhang X and Liu M. Optimization protocol for the extraction of antioxidant components from Origanum vulgare leaves using response surface methodology. Saudi J Biol Sci. 2016;23(3) : 389–396.
43.    Zhang H, Birch J, Ma ZF, Xie C, Yang H, Bekhit A and Dias . Optimization of microwave-assisted extraction of bioactive compounds from New Zealand and Chinese Asparagus officinalis L. roots. Food Sci Technol. 2019;56 : 799–810.
44.    Wang F, Pan T, Yuan R, Li C and Li K. Optimization of extraction process of flavonoids in Phyllanthus emblica L. by response surface methodology and content determination. Indian J Tradit Know. 2014;14(2) : 213-219.
45.    Do TH, Truong HB and Nguyen HC. Optimization of Extraction of Phenolic Compounds from Ocimum Basilicum Leaves and Evaluation of Their Antioxidant Activity. Pharm Chem J. 2020;54(2) : 162–169.
46.    Fan Z, Li L, Bai X, Zhang H, Liu QR, Zhang H, Fu YJ and Moyo R. Extraction optimization, antioxidant activity, and tyrosinase inhibitory capacity of polyphenols from Lonicera japonica. Food Sci Nutr. 2019;7(5) : 1786 – 1794.
47.    Prasad KN, Yang EY, Yi C, Zhao M and Jiang Y. Effects of high pressure on the extraction yield, total phenolic content and antioxidant activity of longan fruit pericarp. Innov Food Sci Emerg Technol. 2009;10(2) :155–159.
48.    Lovrić V, Putnik P, Kovačević DB, Jukić M and Dragović-Uzelac V. Effect of microwave-assisted extraction on the phenolic compounds and antioxidant capacity of Blackthorn flowers. Food Technol Biotechnol. 2017;55(2) : 243–250.
49.    Tawaha K, Alali FQ, Gharaibeh M, Mohammad M and El-Elimat T. Antioxidant activity and total phenolic content of selected Jordanian plant species. Food Chem. 2007;104:1372-1378.
50.    Sadhukhan B, Mondal NK and Chattoraj S. Optimisation using central composite design (CCD) and the desirability function for sorption of methylene blue from aqueous solution onto Lemna major. Karbala International Journal of Modern Science. 2016;2(3): 145–155.
51.    Bezerra MA, Santelli RE, Oliveira EP, Villar LS and Escaleira LA. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta. 2008;76(5) : 965–977.
52.    Bezerra MA, Lemos VA , Novaes CG, Jesus RM, Filho HRS, Araújoa S A and Alvesa J P S. Application of mixture design in analytical chemistry. Microchem J. 2020;152 :104336–104349.
53.    Joglekar AM and May AT. Product excellence through design of experiments. Cereal Food World. 1987 ;32(12) : 857–868.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

0.38
2018CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available