Author(s): S. Subramanian, B. Prasanth


DOI: 10.52711/0974-360X.2021.01075   

Address: S. Subramanian*, B. Prasanth
Department of Pharmaceutics, PSG College of Pharmacy, Coimbatore-641004, Tamil Nadu, India.
*Corresponding Author

Published In:   Volume - 14,      Issue - 12,     Year - 2021

The research study intends to formulate pH triggered in situ gel of Cromolyn sodium composed of Polyacrylic acid (carbopol 934) polymer in combination with Hydroxypropyl Methylcellulose (HPMC K4M) polymer at 1:1, 1.5:1, 2:1 molar ratio by utilizing pH trigger method. Formulations were evaluated for pH, viscosity, gelling capacity, drug content and in vitro drug release. Results of Carbopol 934 and HPMC K4M based in situ gelling systems at 1:1, 1.5:1, 2:1 shown that the formulations were fluid state at room temperature in a formulated pH (pH 4.5) and went through fast progress into the viscous gel phase at the pH of the tear fluid 7.4. The viscosity of formulated pH triggered in situ gel at 2:1 molar ratio shown excellent result compares to 1:1, 1.5:1 molar ratio. The in vitro drug release of the developed in situ gelling formulations at 1:1, 1.5:1, 2:1 molar ratios increases the contact time and showed a non – fickian diffusion type of release behavior with 94.45%, 83.26%, 70.48% respectively over 8 hours periods compared with that of marketed formulation that shows 99.4% over 4 hours. Thus, the developed system at 2:1 molar ratio acts as a viable alternative to conventional eye drops and also prevent the rapid drainage.

Cite this article:
S. Subramanian, B. Prasanth. Sustained ophthalmic delivery of pH triggered Cromolyn sodium in situ gel. Research Journal of Pharmacy and Technology. 2021; 14(12):6211-5. doi: 10.52711/0974-360X.2021.01075

S. Subramanian, B. Prasanth. Sustained ophthalmic delivery of pH triggered Cromolyn sodium in situ gel. Research Journal of Pharmacy and Technology. 2021; 14(12):6211-5. doi: 10.52711/0974-360X.2021.01075   Available on:

1.    Kumar SP et al. Recent development system: a review.  Int J Pharm clin Res. 2013; 5(2): 64-71.
2.    Kuno N, Fujii S. Recent advance in ocular drug delivery systems. Polymers. 2011; 3(1): 193-221.
3.    Rajoria G, Gupta A. In situ gelling system: a novel approach for ocular drug delivery. American journal of PharmTech Research. 2012; 2(4): 2249-3387.
4.    Patil AP et al. A novel ophthalmic drug delivery systems: in situ gel. Int J Pharm Res Sci. 2012; 3: 2938-2946.
5.    Rathore KS. In situ gelling ophthalmic drug delivery system: an overview. Int J Pharm Sci Res. 2010; 2(4): 30-34.
6.    Malik A, Satyananda S. pH induced in situ gelling system of an anti-infective drug for sustained ocular delivery. J App Pharm Sci. 2014; 4(1): 101-104.
7.    Song J et al. Preparation and evaluation of Sinomenine Hydrochloride in situ gel for uveitis treatment. International immunopharmacology. 2013; 17(1): 99-107.
8.    Ahmed VA et al. In Situ Gel Forming Ophthalmic Drug Delivery System. Research J. Pharm. and Tech. 2009; 2(1): 123-127.
9.    Madan M et al. In situ forming polymeric drug delivery systems. Indian J Pharm Sci. 2009; 71(3): 242-251.
10.    Kumar D et al. Nanoparticles laden in situ gelling system for ocular drug targeting. J Adv Pharm Technol Res. 2013; 4(1): 19-17.
11.    Gupta SK, Singhvi IJ. In situ gelling system and other possible innovative approach for ocular disease: A Review. Research J. Pharm. and Tech. 2011; 4(6): 872-882.  
12.    Miyazaki S et al. In situ gelling Xyloglucan formulations for sustained release ocular delivery of pilocarpine hydrochloride. Int J Pharm. 2001; 229: 29-36.
13.    You J et al. Bioresponsive matrices in drug delivery. J Biol Eng. 2010; 4(1): 1-12.
14.    Hartmann V, Keipert S. Physicochemical, in vitro and in vivo characterization of polymers for ocular use. Pharmazie. 2000; 55(6): 440-443.
15.    Lee C, Moturi V, Lee Y. Thixotropic property in pharmaceutical formulations. J control release. 2009; 136(2): 88-98.
16.    Pisal P, Patil S, Pokharkar V. Rheological investigation and its correlation with permeability coefficient of drug loaded carbopol gel: Influence of absorption enhancers. Drug Dev Ind Pharm. 2013; 39(4): 593-599.
17.    Tamburic S, Craig D. Rheological evaluation of polyacrylic acid hydrogels. J Pharm Sci. 1995; 1(3): 107-109.
18.    Kouchak M, Mahmoodzadeh M, Farrahi F. Designing of a pH triggered Carbopol/HPMC In situ gel for Ocular Delivery of Dorzolamide HCL: In vitro, In vivo, and Ex Vivo Evaluation. AAPS Pharm Sci Tech. 2019; 20(5): 210.   
19.    Tiwari SP, Vidyasagar G. Identification, characterization and Drug-Excipient compatibility of Diltiazem Hcl by Physico-chemical Technique. UK Journal of Pharmaceutical and Biosciences. 2014; 2(5): 49-53.
20.    Wani M et al. Formulation and Evaluation of Ophthalmic In Situ gel using Moxifloxacin Coated Silver Nanoparticles. Research J. Pharm. and Tech. 2020; 13(8): 3623-3630.
21.    Basavaraj K et al. A Novel pH triggered in situ gel for sustained ophthalmic delivery of Ketorolac tromethamine. Asian Journal of Pharmaceutical science. 2009; 4(3): 189-199.
22.    Chand S, Sharma D, Sharma A. Formulation and Evaluation of pH Sensitive In Situ Ocular Gel of Doxycycline Hyclate. International Journal of Development Research. 2018; 8(2): 19028-19035.
23.    Deshpande MM et al. UV Spectrophotometeric Estimation of Nitazoxanide in Tablet Dosage Form. Research J. Pharm. and Tech. 2011; 4(11): 1714-1716.
24.    Kushwaha AK et al. Development and Evaluation of solid lipid Nanoparicles of Raloxifene Hcl for Enhanced Bioavilability. BioMed Research International. 2013.
25.    Panda KC et al. Formulation and Evaluation of Immediate Release Tablets of Topiramate using Sodium Starch Glycolate. Research J. Pharm. and Tech. 2019; 12(6): 3024-3028.
26.    Rohan KB et al. Formulation and ex vivo- in vivo evaluation of pH triggered brimonidine tartrate in situ gel for the glaucoma treatment using application of 32 factorial design. Drug Development and Industrial Pharmacy. 2017; 44(5): 800-807.
27.     Kaur H, Loyee S, Garg R. Formulation and Evaluation of in situ ocular Gel of Gatifloxacin. International Journal of Pharma Research and Health Sciences. 2016; 4(5): 1365-1370.
28.    Makwana SB, Patel VA, Parmer SJ. Development and Characterization of in situ gel for ophthalmic formulation containing ciprofloxacin Hcl. Result in Pharma Science. 2016; 6: 1-6.
29.    Yellanki SK et al. Development of Moxifloxacin Hydrochloride In Situ Ophthalmic Gelling Systems using Natural and Synthetic Polymers and in vitro Evaluation. Research J. Pharm. and Tech. 2010; 3(3): 729-732.  
30.    Nirosha M et al. Formulation and Evaluation of itraconazole ophthalmic in situ gel. Indo American Journal of Pharmaceutical Sciences. 2017; 4(5): 1101-1108.
31.    Gupta SK, Singhvi IJ. Sustained Opthalmic Delivery of Moxifloxacin Hydrochloride from an pH Triggered In Situ Gelling System. Research J. Pharm. and Tech. 2012; 5(12): 1538-1542.
32.    Reddy JS, Ahmed MG. Sustained ocular delivery of sparfloxacin from pH triggered in situ gelling system. Mahidol University Journal of Pharmaceutical Sciences. 2013; 40(3): 16-25.
33.    Jain D et al. Newer trends in situ gelling for controlled ocular drug delivery. Journal of Analytical and Pharmaceutical Research. 2016; 2(3): 00022.
34.    Kondepati HV, Kulyadi GP, Tippavajhala VK. A review on in situ gel forming ophthalmic drug delivery systems. Research J. Pharm. and Tech. 2018; 11(1): 380-386.
35.    Bohrey S, Chourasiiya V, Pandey A. Polymeric nanoparticles containing diazepam: preparation, optimization, characterization, in vitro drug release and release kinetic study. Nanocovergence. 2016; 3(3): 1-7.
36.    Bhagat BV et al. Development of ophthalmic in situ gelling formulation of ciprofloxacin hydrochloride using gellan gum. Research J. Pharm. and Tech. 2011; 4(11): 1742-1745.
37.    Chandira M et al. Formulation and Evaluation of Sustained Release Matrix Tablet of Zidovudine. International Journal of Current Pharmaceutical Research. 2009; 1(1): 14-31.
38.    Thampi LM, Manickem S, Kuppuswamy S. Formulation Evaluation and kinetic studies of etodolac delayed release tablet using optimized solid dispersion. Research J. Pharm. and Tech. 2018; 11(2): 445-454.
39.    Ravi RP et al. Highly water-soluble mast cell stabilizer-encapsulated solid lipid nanoparticles with enhanced oral bioavilability. Journal of Microencapsulation. 2016; 33(3): 209-220.
40.    Swati G, Suresh PV. Carbopol/ Chitosan based pH triggered in situ gelling system for ocular delivery of timolol malate. Sci Pharma. 2010; 78(4): 959-976.
41.    Li S et al. Effect of HPMC and Carbopol on the release and floating properties of Gastric Floating Drug Delivery System using factorial design. Int J Pharm. 2003; 253(2): 13-22.
42.    Charoo NA et al. Ophthalmic delivery of ciprofloxacin hydrochloride from different polymer formulations: In vitro and in vivo studies. Drug Dev Indus Pharmacy. 2003; 29(2): 215–221.
43.    Schwartz JB, Simonelli AP, Higuchi WI. Drug release from wax matrices: Analysis of data with first order kinetics and with the diffusion-controlled model. J Pharm Sci. 1968; 57(2): 274–277.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

56th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Recent Articles


Not Available