Author(s): Kriti Kushwaha, Rishi Raj Sharma, Jeena Gupta


DOI: 10.52711/0974-360X.2021.01165   

Address: Kriti Kushwaha, Rishi Raj Sharma, Jeena Gupta
Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab (India) – 144411.
*Corresponding Author

Published In:   Volume - 14,      Issue - 12,     Year - 2021

Due to many causative factors, recent advances in diabetic medication do not prove to be fruitful. In addition to this, the use of synthetic drugs has worsened the condition of patients. Henceforth, the use of plant-based natural products is in trend these days. One such plant-based product is lipoic acid which has been evaluated for its protective effect on diabetic patients. Epigenetics is the study of anomaly in gene expression which is inheritable and reversible, in which DNA sequence remains intact. Evidences suggest that factors responsible for diabetes might be influenced by the interplay between histone lysine acetylation and DNA methylation. Since these changes are reversible, it gives a plethora of opportunities to develop new novel and cost-effective therapies for diabetes-related complications in coming future. The studies are gathering up to highlight the effect of changing diet and environment on different epigenetic regulatory mechanisms. Many phytochemicals regulate these epigenetic events and thus gene expression for providing protection against different diseases. Lipoic acid is also known to have potent inhibitory effects on histone deacetylase (HDAC) activity which is essential for the treatment of various diseases like diabetes. The understanding of these mechanisms can help to cure/prevent diabetes just by changing feeding habits.

Cite this article:
Kriti Kushwaha, Rishi Raj Sharma, Jeena Gupta. Epigenetic modifying potential of Lipoic acid: Implications in curing diabetes. Research Journal of Pharmacy and Technology. 2021; 14(12):6747-2. doi: 10.52711/0974-360X.2021.01165

Kriti Kushwaha, Rishi Raj Sharma, Jeena Gupta. Epigenetic modifying potential of Lipoic acid: Implications in curing diabetes. Research Journal of Pharmacy and Technology. 2021; 14(12):6747-2. doi: 10.52711/0974-360X.2021.01165   Available on:

1.    Czech MP. Insulin action and resistance in obesity and type 2 diabetes. Nat med. 2017; 23(7): 804-14.
2.    Yaribeygi H, Atkin SL, Sahebkar A. A review of the molecular mechanisms of hyperglycemia‐induced free radical generation leading to oxidative stress. J Cell Physiol. 2019; 234(2): 1300-12.
3.    Venkatesan M, Arumugam V, Ayyasamy R, Ramachadran K, Namasivayam S, Sundaresan U, Govindaraju A, Saravanan R. Role of marine polysaccharides in treatment of metabolic disorders. Enzymatic Technologies for Marine Polysaccharides. 2019; 8:335.
4.    Peters AL, Buschur EO, Buse JB, Cohan P, Diner JC, Hirsch IB. Euglycemic diabetic ketoacidosis: a potential complication of treatment with sodium–glucose cotransporter 2 inhibition. Diabetes care. 2015; 38(9):1687-93.
5.    American Diabetes Association. 2. Classification and diagnosis of diabetes. Diabetes care. 2017; 40(Supplement 1):S11-24.
6.    Moos WH, Maneta E, Pinkert CA, Irwin MH, Hoffman ME, Faller DV, Steliou K. Epigenetic treatment of neuropsychiatric disorders: autism and schizophrenia. Drug Dev Res. 2016 ; 77(2):53-72.        
7.    Dashwood RH, Ho E. Dietary histone deacetylase inhibitors: from cells to mice to man. Semin Cancer Biol. 2007; 17(5): 363-369. Academic Press.
8.    Perrine SP, Hermine O, Small T, Suarez F, O'Reilly R, Boulad F, Fingeroth J, Askin M, Levy A, Mentzer SJ, Di Nicola M. A phase 1/2 trial of arginine butyrate and ganciclovir in patients with Epstein-Barr virus–associated lymphoid malignancies. Blood Adv. 2007; 109(6): 2571-8.
9.    Steliou K, Boosalis MS, Perrine SP, Sangerman J, Faller DV. Butyrate histone deacetylase inhibitors. BioResearch open access. 2012; 1(4): 192-8.
10.    Gupta J, Tikoo K. Involvement of insulin-induced reversible chromatin remodeling in altering the expression of oxidative stress-responsive genes under hyperglycemia in 3T3-L1 preadipocytes. Gene. 2012; 504(2): 181-91.
11.    Schilderink R, Verseijden C, Seppen J, Muncan V, Van Den Brink GR, Lambers TT, van Tol EA, de Jonge WJ. The SCFA butyrate stimulates the epithelial production of retinoic acid via inhibition of epithelial HDAC. Am J Physiol Gast L. 2016; 310(11): G1138-46.
12.    Laher I. Diabetes and alpha lipoic acid. Front Pharmacol. 2011; 2: 69.
13.    Shay KP, Moreau RF, Smith EJ, Smith AR, Hagen TM. Alpha-lipoic acid as a dietary supplement: molecular mechanisms and therapeutic potential. BBA Gen Subjects. 2009; 1790(10): 1149-60.
14.    Snell EE, Strong FM, Peterson WH. Growth factors for bacteria: Fractionation and properties of an accessory factor for lactic acid bacteria1. Biochem J. 1937; 31(10): 1789.
15.    Reed LJ, De Busk BG, Gunsalus IC, Hornberger CS: Cristalline alpha-lipoic acid: a catalytic agent associated with pyruvate dehydrogenase. SCIEAS. 1951; 114: 93-94.
16.    de Boer VC, Houten SM. A mitochondrial expatriate: nuclear pyruvate dehydrogenase. Cell. 2014; 158(1): 9-10.
17.    Sutendra G, Kinnaird A, Dromparis P, Paulin R, Stenson TH, Haromy A, Hashimoto K, Zhang N, Flaim E, Michelakis ED. A nuclear pyruvate dehydrogenase complex is important for the generation of acetyl-CoA and histone acetylation. Cell. 2014; 158(1): 84-97.
18.    Mayr JA, Feichtinger RG, Tort F, Ribes A, Sperl W. Lipoic acid biosynthesis defects. J Inherit Metab Dis; 37(4): 553-63.
19.    Ullah MW, Khattak WA, Ul-Islam M, Khan S, Park JK. Metabolic engineering of synthetic cell-free systems: strategies and applications. Biochem Eng J. 2016; 105: 391-405.
20.    Cheung PC, Mehta BM, editors. Handbook of food chemistry. Springer Berlin Heidelberg; 2015; 11.
21.    Spalding MD, Prigge ST. Lipoic acid metabolism in microbial pathogens. Microbiol. Mol. Biol. Rev. 2010;  74(2): 200-28.
22.    Zhang H, Luo Q, Gao H, Feng Y. A new regulatory mechanism for bacterial lipoic acid synthesis. MicrobiologyOpen. 2015; 4(2): 282-300.
23.    Pashaj A, Xia M, Moreau R. α-Lipoic acid as a triglyceride-lowering nutraceutical. Can J Physiol Pharm. 2015; 93(12): 1029-41.
24.    Moos WH, Faller DV, Harpp DN, Kanara I, Pernokas J, Powers WR, Steliou K. Microbiota and neurological disorders: a gut feeling. BioResearch open access. 2016; 5(1):137-45.
25.    Rochette L, Ghibu S, Muresan A, Vergely C. Alpha-lipoic acid: molecular mechanisms and therapeutic potential in diabetes. Can J Physiol Pharm. 2015; 93(12): 1021-1027.
26.    Dörsam B, Fahrer J. The disulfide compound α-lipoic acid and its derivatives: a novel class of anticancer agents targeting mitochondria. Cancer lett. 2016;  371(1): 12-9.
27.    Irwin MH, Moos WH, Faller DV, Steliou K, Pinkert CA. Epigenetic treatment of neurodegenerative disorders: Alzheimer and Parkinson diseases. Drug dev res. 2016; 77(3): 109-23.
28.    Prasad KN. Simultaneous activation of Nrf2 and elevation of dietary and endogenous antioxidant chemicals for cancer prevention in humans. J Am Coll Nutr. 2016;  35(2): 175-84..
29.    Cronan JE. Assembly of lipoic acid on its cognate enzymes: an extraordinary and essential biosynthetic pathway. Microbiol. Mol. Biol. Rev. 2016; 80(2): 429-50.
30.    Rochette L, Ghibu S, Muresan A, Vergely C. Alpha-lipoic acid: molecular mechanisms and therapeutic potential in diabetes. Can J Physiol Pharm. 2015; 93(12): 1021-7.
31.    Tibullo D, Volti GL, Giallongo C, Grasso S, Tomassoni D, Anfuso CD, Lupo G, Amenta F, Avola R, Bramanti V. Biochemical and clinical relevance of alpha lipoic acid: antioxidant and anti-inflammatory activity, molecular pathways and therapeutic potential. Inflamm Res. 2017; 66(11): 947-59.
32.    Wray DW, Nishiyama SK, Harris RA, Zhao J, McDaniel J, Fjeldstad AS, Witman MA, Ives SJ, Barrett-O'Keefe Z, Richardson RS. Acute reversal of endothelial dysfunction in the elderly after antioxidant consumption. Hypertension. 2012; 59(4): 818-24..
33.    Zhang WJ, Bird KE, McMillen TS, LeBoeuf RC, Hagen TM, Frei B. Dietary a-lipoic acid supplementation inhibits atherosclerotic lesion development in apolipoprotein E-deficient and apolipoprotein E/low-density lipoprotein receptor-deficient mice. Circ Res. 2008; 117(3): 421-8.
34.    Ying Z, Kherada N, Farrar B, Kampfrath T, Chung Y, Simonetti O, Deiuliis J, Desikan R, Khan B, Villamena F, Sun Q. Lipoic acid effects on established atherosclerosis. Life sci. 2010; 86(3-4): 95-102.
35.    Ziegler D, Reljanovic M, Mehnert H, Gries FA. α-Lipoic acid in the treatment of diabetic polyneuropathy in Germany: current evidence from clinical trials. Exp Clin Endocrinol Diabetes. 1999; 107(07): 421-30.
36.    Packer L, Kraemer K, Rimbach G. Molecular aspects of lipoic acid in the prevention of diabetes complications. Nutr J. 2001; 17(10): 888-95.
37.    Wang KX, Wang ZZ, Ao YJ. Influence of α-Lipoic acid adjuvant therapy on sugar metabolism, peripheral nerve conduction velocity and oxidative stress in patients with diabetic peripheral neuropathy. J Hainan Med. Univ. 2017; 23(18): 39-43.
38.    Mirza N, Cornblath D, Hasan SA, Hussain U. Alpha-lipoic acid for diabetic peripheral neuropathy. Cochrane Database of Systematic Reviews, 2015(3), CD005492.
39.    Kishi Y, Schmelzer JD, Yao JK, Zollman PJ, Nickander KK, Tritschler HJ, Low PA. Alpha-lipoic acid: effect on glucose uptake, sorbitol pathway, and energy metabolism in experimental diabetic neuropathy. Diabetes. 1999; 48(10): 2045-51.
40.    Hürdağ C, Uyaner İ, Gürel E, Utkusavas A, Atukeren P, Demirci C. The effect of α-lipoic acid on NOS dispersion in the lung of streptozotocin-induced diabetic rats. J Diabetes Complicat. 2008; 22(1):56-61.
41.    Eom GH, Kook H. Posttranslational modifications of histone deacetylases: implications for cardiovascular diseases. PHARMACOL THERAPEUT. 2014; 143(2): 168-80.
42.    Bjerling P, Silverstein RA, Thon G, Caudy A, Grewal S, Ekwall K. Functional divergence between histone deacetylases in fission yeast by distinct cellular localization and in vivo specificity. Nat Rev Mol Cell Biol. 2002; 22(7): 2170-81.
43.    Ghelani H, Razmovski‐Naumovski V, Nammi S. Chronic treatment of (R)‐α‐lipoic acid reduces blood glucose and lipid levels in high‐fat diet and low‐dose streptozotocin‐induced metabolic syndrome and type 2 diabetes in Sprague‐Dawley rats. Pharmacol Res. 2017; 5(3).
44.    Myzak MC, Dashwood RH. Chemoprotection by sulforaphane: keep one eye beyond Keap1. Cancer lett. 2006;  233(2): 208-18.
45.    Hong YH, Nishimura Y, Hishikawa D, Tsuzuki H, Miyahara H, Gotoh C, Choi KC, Feng DD, Chen C, Lee HG, Katoh K. Acetate and propionate short chain fatty acids stimulate adipogenesis via GPCR43. Endocrinology. 2005; 146(12): 5092-9.
46.    Stoner MW, Thapa D, Zhang M, Gibson GA, Calderon MJ, St. Croix CM, Scott I. α-Lipoic acid promotes α-tubulin hyperacetylation and blocks the turnover of mitochondria through mitophagy. Biochemical J. 2016; 473(12): 1821-30.
47.    Xia M, Erickson A, Yi X, Moreau R. Mapping the response of human fibroblast growth factor 21 (FGF21) promoter to serum availability and lipoic acid in HepG2 hepatoma cells. BBA-GEN SUBJECTS. 2016; 1860(3): 498-507.
48.    Ryu SH, Park EY, Kwak S, Heo SH, Ryu JW, Park JH, Choi KC, Lee SW. Protective effect of α-lipoic acid against radiation-induced fibrosis in mice. Oncotarget. 2016;  7(13): 15554.
49.    Faggi L, Porrini V, Lanzillotta A, Benarese M, Mota M, Tsoukalas D, Parrella E, Pizzi M. A polyphenol-enriched supplement exerts potent epigenetic-protective activity in a cell-based model of brain ischemia. Nutr J. 2019; 11(2): 345.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

56th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Recent Articles


Not Available