Author(s): Ranadip Mondal, Debraj Dey, Subhasis Maity, Tapan Kumar Giri


DOI: 10.5958/0974-360X.2021.00202.X   

Address: Ranadip Mondal, Debraj Dey, Subhasis Maity, Tapan Kumar Giri*
NSHM Knowledge Campus, Kolkata-Group of Institutions,
124 BL Saha Road, Kolkata-700053, West Bengal, India.
*Corresponding Author

Published In:   Volume - 14,      Issue - 2,     Year - 2021

Most of the anticancer agents have a poor aqueous solubility and narrow therapeutic index which leads to toxicity in human bodies. The novel nanocarrier based drug delivery systems can circumvent the drawback of generally used drugs in cancer treatment. Among various types of polymers, polysaccharides are used for the preparation of nanocarrier due to easy availability, low toxicity, biodegradability, and biocompatibility. Moreover, ionic (cationic or anionic) polysaccharides contain different hydrophilic groups such as amino, carboxyl, and hydroxyl groups that is soluble in water and forms non-covalent bonds with mucosal membranes and biological tissues to provide mucoadhesion and bioadhesion characteristics. In addition, ionic groups present in the polysaccharide backbone are responsible for modification. Recently, many researchers are giving attention to ionic polysaccharide-based nanoparticles for cancer therapy. However, the findings are not collected and represented in a comprehensive way. This article bridges that lacuna. This review portrays the chemistry of ionic polysaccharides and different approaches used to prepare ionic polysaccharide-based nanoparticles as the vehicle of antitumor agents. In addition, this article reviews the current advancements of ionic polysaccharide-based nanoparticles for the delivery of anticancer drug.

Cite this article:
Ranadip Mondal, Debraj Dey, Subhasis Maity, Tapan Kumar Giri. Recent advancement of Ionic polysaccharide-based nanoparticles for Cancer therapy. Research J. Pharm. and Tech. 2021; 14(2):1122-1130. doi: 10.5958/0974-360X.2021.00202.X

Ranadip Mondal, Debraj Dey, Subhasis Maity, Tapan Kumar Giri. Recent advancement of Ionic polysaccharide-based nanoparticles for Cancer therapy. Research J. Pharm. and Tech. 2021; 14(2):1122-1130. doi: 10.5958/0974-360X.2021.00202.X   Available on:

1.    Bera S, Maity S, Ghosh B, Ghosh A, Giri TK. Development and characterization of solid dispersion system for enhancing the solubility and cytotoxicity of dietary capsaicin. Curr. Drug. Ther. 2020; 15: 143 – 151.
2.    Saha S, Giri TK. Breaking the barrier of cancer through papaya extract and their formulation. Anticancer. Agents. Med. Chem. 2019;19: 1577-1587
3.    Mondal R, Bobde Y, Ghosh B, Giri TK. Development and Characterization of a Phospholipid Complex for Effective Delivery of Capsaicin. Indian. J. Pharm. Sci. 2019;81(6):1011-1019.
4.    Bharti Ahirwar, Dheeraj Ahirwar. In vivo and in vitro investigation of cytotoxic and antitumor activities of polyphenolic leaf extract of Hibiscus sabdariffa against, breast cancer cell lines. Research J. Pharm. and Tech 2019; 13(2):615-620.
5.    Kailas M. Karande, Shivaji P. Gawade. Synthesis of Nanosilver and its Comparative Evaluation of Cytotoxic Activity. Research J. Pharm. and Tech 2020; 13(2):659-663.
6.    Zeinab A. Salama, Ahmed M. Aboul-Enein, Alaa A. Gaafar, Mohsen S. Asker, Hanan F. Aly, Habiba A. Ahmed. In-vitro Antioxidant, Antimicrobial and Anticancer Activities of Banana leaves (Musa acuminata) and Olive leaves (Olea europaea L.) as by-products. Research J. Pharm. and Tech 2020; 13(2):687-696.
7.    Karthiga Muralidharan, Punnagai Kumaravelu, Darling Chellathai David. Cytotoxic effect of Ethanolic extracts of Andrographis echioides in human colon cancer cell Lines Via Apoptosis. Research J. Pharm. and Tech 2020; 13(2): 871-876.
8.    Manchun S, Dass CR, Sriamornsak P. Targeted therapy for cancer using pH-responsive nanocarrier systems. Life. Sci. 2012;90: 381–387.
9.    Chan A, Orme RP, Fricker RA, Roach P. Remote and local control of stimuli responsive materials for therapeutic applications. IEEE. Trans. Nucl. Sci. 2013;65: 497–514.
10.    Vaupel P. Tumor micro environmental physiology and its implications for radiation oncology. Semin. Radiat. Oncol. 2004; 14: 198–206.
11.    Maeda H. SMANCS and polymer-conjugated macromolecular drugs: advantages in cancer chemotherapy. Adv. Drug. Deliv. Rev. 2001; 46: 169–185.
12.    Leu AJ, Berk DA, Lymboussaki A, Alitalo K, Jain RK. Absence of functional lymphatics within a murine sarcoma: a molecular and functional evaluation. Cancer. Res. 2000; 60: 4324–4327.
13.    Maeda H. Tumor-selective delivery of macromolecular drugs via the EPR effect: background and future prospects. Bioconjug. Chem. 2010; 21: 797–802.
14.    Debele TA, Peng S, Tsai HC. Drug carrier for photodynamic cancer therapy. Int. J. Mol. Sci. 2015; 16: 22094–22136.
15.    Chidambaram M, Manavalan R, Kathiresan K. Nanotherapeutics to overcome conventional cancer chemotherapy limitations. J. Pharm. Pharm. Sci. 2011; 14: 67–77
16.    Giri TK, Bhowmick S, Maity S. Entrapment of capsaicin loaded nanoliposome in pH responsive hydrogel beads for colonic delivery. J. Drug. Deliv. Science. Technol. 2017;39: 417-422.
17.    Giri TK, Mukherjee P, Barman TK, Maity S. Nano-encapsulation of capsaicin on lipid vesicle and evaluation of their hepatocellular protective effect. Int. J. Biol. Macromol. 2016; 88:236–243.
18.    Sharman W. Targeted photodynamic therapy via receptor mediated delivery systems. Adv. Drug. Deliv. Rev. 2004; 56: 53–76.
19.    Kozlowska D, Foran P, MacMahon P, Shelly MJ, Eustace S, O'Kennedy R. Molecular and magnetic resonance imaging: the value of immunoliposomes. Adv. Drug. Deliv. Rev. 2009; 61: 1402–1411.
20.    De Jong WH, Borm PJA. Drug delivery and nanoparticles: applications and hazards. Int. J. Nanomedicine. 2008; 3: 133–149.
21.    Akiladevi D, Hari Prakash, Biju GB, Madumitha N. Nano-novel approach: Self Nano Emulsifying Drug Delivery System (SNEDDS) - Review Article. Research J. Pharm. and Tech 2020; 13(2):983-990.
22.    Gayathri.V, Nivedha.S, Pujita.V, Ivo Romauld.S. Green synthesis of copper nanoparticles using bracts of Musa paradisiaca (Monthan) and study of its antimicrobial and antioxidant activity. Research J. Pharm. and Tech 2020; 13(2):781-786.
23.    Karthika C, Sureshkumar R, Upadhyay D, Janani SK, Vasanthi C, Raja M, Upathyayula SSN. Formulation development and in vitro characterization of solid self-nano emulsifying drug delivery system for curcumin to target colon adenocarcinoma. Research J. Pharm. and Tech 2019; 12:3338-3346.
24.    Dutta P, Giri S, Giri TK. Xyloglucan as green renewable biopolymer used in drug delivery and tissue engineering. Int. J. Biol. Macromol. 2020;160: 55–68.
25.    Giri TK, Verma P, Tripathi DK. Grafting of vinyl monomer onto gellan gum using microwave: synthesis and characterization of grafted copolymer. Adv. Compos. Mater. 2015; 24: 531-543.
26.    Chowhan A, Giri TK. Polysaccharide as renewable responsive biopolymer for in situ gel in the delivery of drug through ocular route. Int. J. Biol. Macromol. 2020;150: 559-572.
27.    Dey M, Das M, Chowhan A, Giri TK. Breaking the barricade of oral chemotherapy through polysaccharide nanocarrier. Int. J. Biol. Macromol. 2019;130: 34–49.
28.    Badwaik HR, Thakur D, Sakure K, Giri TK, Nakhate KT, Tripathi DK. Microwave assisted synthesis of polyacrylamide grafted guar gum and its application as flocculent for waste water treatment. Research J. Pharm. and Tech 2014;7: 401-407.
29.    Giri TK, Mishra S, Tripathi DK. Carriers used for the development of solid dispersion for poorly water-soluble drugs. Research J. Pharm. and Tech 2011, 4(3): 356-367.
30.    Giri TK, Sa B. Formulation of rapidly disintegrating fast dissolving diazepam tablets using solid dispersions through a statistical approach. Res. J. Pharm. Technol. 2010;3(4): 1246-1251.
31.    Das M, Giri TK. Hydrogels based on gellan gum in cell delivery and drug delivery. J. Drug. Deliv. Sci. Technol. 2020; 56 (Part A): 101586.
32.    Giri TK, Pure S, Tripathi DK. Synthesis of graft copolymers of acrylamide for locust bean gum using microwave energy: swelling behavior, flocculation characteristics and acute toxicity study. Polimeros. 2015; 25:168-174.
33.    Giri TK, Verma D, Tripathi DK. Effect of adsorption parameters on biosorption of Pb++ ions from aqueous solution by poly (acrylamide)-grafted kappa-carrageenan. Polym. Bull. 2015; 72: 1625-1646.
34.    Liu ZH, Jiao YP, Wang YF, Zhou CR, Zhang ZY. Polysaccharides based nanoparticles as drug delivery systems. Adv. Drug. Deliv. Rev. 2008; 60: 1650–1662.
35.    Muzzarelli RAA, Muzzarelli C. Chitosan chemistry: Relevance to the biomedical sciences polysaccharides 1: structure, characterization and use. Adv. Polym. Sci. 2005; 186: 151-209.
36.    Janes KA, Calvo P, Alonso MJ. Polysaccharide colloidal particles as delivery systems for macromolecules. Adv. Drug. Deliv. Rev. 2001; 47: 83–97.
37.    Gan Q, Wang T, Cochrane C, McCarron P. Modulation of surface charge, particle size and morphological properties of chitosan-TPP nanoparticles intended for gene delivery. Colloids. Surf. B. Biointerfaces. 2005; 44: 65–73.
38.    Liu Z, Lv D, Liu S, Gong J, Wang D, Xiong M, Chen X, Xiang R, Tan X. Alginic acid-coated chitosan nanoparticles loaded with legumain DNA vaccine: effect against breast cancer in mice. PLoS. One. 2013; 8: e60190.
39.    Kim YD, Morr CV. Microencapsulation Properties of Gum Arabic and Several Food Proteins: Spray-Dried Orange Oil Emulsion Particles. J. Agr. Food. Chem. 1996; 44: 1314-1320.
40.    McNamee BF, O'Riorda ED, O'Sullivan M. Emulsification and Microencapsulation Properties of Gum Arabic. J. Agr. Food. Chem. 1998; 46: 4551-4555.
41.    Gabas AL, Telis VRN, Sobral PJA, Telis-Romero J. Effect of maltodextrin and arabic gum in water vapor sorption thermodynamic properties of vacuum dried pineapple pulp powder. J. Food. Eng. 2007; 82: 246-252.
42.    Kurozawa LE, Park K, Hubinger MD. Effect of maltodextrin and gum arabic on water sorption and glass transition temperature of spray dried chicken meat hydrolysate protein. J. Food. Eng. 2009; 91: 287-296.
43.    Moschakis T, Murray BS, Biliaderis CG. Modifications in stability and structure of whey protein-coated o/w emulsions by interacting chitosan and gum arabic mixed dispersions. Food. Hydrocoll. 2010; 24: 8-17.
44.    Buck CB, Thompson CD, Roberts JN, Muller M, Lowy DR, Schiller JT. Carrageenan is a potent inhibitor of papillomavirus infection. PLoS. Pathog. 2006; 2: e69.
45.    Hoffmann S, Vystrcilova L, Ulbrich K, Etrych T, Caysa H, Mueller T, Mader, K. Dual fluorescent HPMA copolymers for passive tumor targeting with pH-sensitive drug release: synthesis and characterization of distribution and tumor accumulation in mice by noninvasive multispectral optical imaging. Biomacromolecules. 2012; 13: 652–663.
46.    Goodarzi N, Ghahremani MH, Dinarvand R. Targeting CD44 by hyaluronic acid-based nano drug delivery systems mayeradicate cancer stem cells in human breast cancer. J. Med. Hypotheses. Ideas. 2011; 5: 26–30.
47.    Vercruysse KP, Prestwich GD. Hyaluronate derivatives in drug delivery. Crit. Rev. The. Drug. Carrier. Syst. 1998; 15: 513–556.
48.    Platt VM, Szoka FC. Anticancer therapeutics: targeting macromolecules and nanocarriers to hyaluronan or CD44, a hyaluronanreceptor. Mol. Pharmacol. 2008; 5: 474–486.
49.    Paliwal R, Paliwal SR, Agrawal GP, Vyas SP. Recent advances in search of oral heparin therapeutics. Med. Res. Rev., 2012, 32,388–409.
50.    Li Y, Rodrigues J, Tomas H. Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications. Chem, Soc. Rev. 2012; 41:2193–2221.
51.    Szczubiałka K, Kamiński K, Zasada K, Karewicz A, Nowakowska M. Heparin-a key drug in the treatment of the circulatory degenerative diseases: controlling its action with polymers. Curr. Pharm. Des. 2012; 18:2591–2606.
52.    Sakiyama-Elbert SE. Incorporation of heparin into biomaterials. Acta. Biomater. 2014; 10:1581–1587.
53.    Liang Y, Kiick KL. Heparin-functionalized polymeric biomaterials in tissue engineering and drug delivery applications. Acta. Biomater. 2014; 10:1588–1600.
54.    Lazo-Langner A, Goss GD, Spaans JN, Rodger MA. The effect of low-molecular-weight heparin on cancer survival. A systematic review and meta-analysis of randomized trials. J. Thromb. Haemost. 2007; 5:729–737.
55.    Li L, Kim JK, Huh KM, Lee YK, Kim SY. Targeted delivery of paclitaxel using folate-conjugated heparin-poly(β-benzyl-L-aspartate) self-assembled nanoparticles. Carbohydr. Polym. 2012; 87: 2120–2128.
56.    Hehre EJ. A fresh understanding of the stereochemical behavior of glycosylases: Structural distinction of “inverting” (2-MCO-type) versus “retaining” (1-MCO-type) enzymes. Adv. Carbohydr. Chem. Biochem. 2000;55: 265-310.
57.    Hehre EJ, Okada G, Genghof DS. Glycosylation as the paradigm of carbohydrase action: evidence from the actions of amylases. Advan. Chem. Ser. 1973; 117:309-333.
58.    Kean T, Thanou M. Biodegradation, biodistribution and toxicity of chitosan. Adv. Drug. Deliv. Rev. 2010; 62: 3–11.
59.    Reis CP, Ribeiro AJ, Houng S, Veiga F, Neufeld RJ. Nanoparticulate delivery system for insulin: design, characterization and in vitro/in vivo bioactivity. Eur. J. Pharm. Sci. 2007; 30: 392-397.
60.    Zhi J, Wang YJ, Luo GS. Adsorption of diuretic furosemide onto chitosan nanoparticles prepared with a water-in-oil nanoemulsion system. React. Funct. Polym. 2005;65: 249-257.
61.    Bodnar M, Hartmann JF, Borbely J. Preparation and characterization of chitosan-based nanoparticles. Biomacromolecules. 2005; 6: 2521-2527.
62.    Bodnár M, Daróczi L, Batta G, Bakó J, Hartmann JF, Borbély J. Preparation and characterization of cross-linked hyaluronan nanoparticles. Colloid. Polym. Sci. 2009; 287: 991-1000.
63.    Pan Y, Li YJ, Zhao HY, Zheng JM, Xu H, Wei G, Hao JS, Cui FD. Bio adhesive polysaccharide in protein delivery system: chitosan nanoparticles improve the intestinal absorption of insulin in vivo. Int. J. Pharm. 2002; 249:139- 147.
64.    De S, Robinson D. Polymer relationships during preparation of chitosan-alginate and poly-l-lysine-alginate nanospheres. J. Control. Release. 2003; 89:101-112.
65.    Ahmad Z, Pandey R, Sharma S, Khuller GK. Pharmacokinetic and pharmacodynamic behaviour of anti-tubercular drugs encapsulated in alginate nanoparticles at two doses. Int. J. Antimicrob. Agents. 2006; 27: 409-416.
66.    Gullotti E, Yeo Y. Extracellularly activated nanocarriers: a new paradigm of tumor targeted drug delivery. Mol. Pharm. 2009; 6: 1041-1051.
67.    Ameller T, Legrand P, Marsaud V, Renoir JM. Drug delivery systems for oestrogenic hormones and antagonists: the need for selective targeting in estradiol dependent cancers. J. Steroid. Biochem. Mol. Biol. 2004; 92:1-18.
68.    Sarmah JK, Bhattacharjee SK, Mahanta R, Mahanta R. Preparation of crosslinked guar gum nanospheres containing tamoxifen citrate by single step emulsion in situ polymer cross-linking method. J. Incl. Phenom. Macro. 2009; 65:329-334.
69.    Martínez A, Iglesias I, Lozano R, Teijón JM, Blanco MD. Synthesis and characterization of thiolated alginate-albumin nanoparticles stabilized by disulfide bonds. Evaluation as drug delivery systems. Carbohydr. Polym. 2011; 83: 1311- 1321.
70.    Lu B, Xiong SB, Yang H, Yin XD, Zhao RB. Mitoxantrone-loaded BSA nanospheres and chitosan nanospheres for local injection against breast cancer and its lymph node metastases. I: Formulation and in vitro characterization. Int. J. Pharm. 2006; 307: 168-174.
71.    Yang X, Zhang Q, Wang Y, Chen H, Zhang H, Gao F, Liu L. Self-aggregated nanoparticles from methoxy poly (ethylene glycol)-modified chitosan: synthesis; characterization; aggregation and methotrexate release in vitro. Colloids. Surf. B. Biointerfaces. 2008; 61:125-131.
72.    Zhang J, Chen XG, Li YY, Liu CS. Self-assembled nanoparticles based on hydrophobically modified chitosan as carriers for doxorubicin. Nanomedicine. 2007; 3: 258-265.
73.    Upadhyay KK, Bhatt AN, Mishra AK, Dwarakanath BS, Jain S, Schatz C, Le Meins JF, Farooque A, Chandraiah G, Jain AK, Misra A, Lecommandoux S. The intracellular drug delivery and anti-tumor activity of doxorubicin loaded poly (γ-benzyl L-glutamate)-b-hyaluronanpolymersomes. Biomaterials. 2010; 31: 2882–2892.
74.    Hu FQ, Ren GF, Yuan H, Du YZ, Zeng S. Shell cross-linked stearic acid grafted chitosan oligosaccharide self-aggregated micelles for controlled release of paclitaxel. Colloids. Surf. B. Biointerfaces. 2006; 50:97-103.
75.    Lee SJ, Hong GY, Jeong YI, Kang MS, Oh JS, Song CE, Lee HC. Paclitaxel-incorporated nanoparticles of hydrophobized polysaccharide and their antitumor activity. Int. J. Pharm. 2012; 433:121–128.
76.    Wang YS, Liu LR, Jiang Q, Zhang QQ. Self-aggregated nanoparticles of cholesterol-modified chitosan conjugate as a novel carrier of epirubicin. Eur. Polym. J. 2007; 43:43-51.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

56th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Recent Articles


Not Available