Author(s):
Michael Josef Kridanto Kamadjaja, Sherman Salim, Birgitta Dwitya Swastyayana Subiakto
Email(s):
michael-j-k-k@fkg.unair.ac.id
DOI:
10.52711/0974-360X.2021.00807
Address:
Michael Josef Kridanto Kamadjaja1, Sherman Salim1, Birgitta Dwitya Swastyayana Subiakto2
1Departement of Prosthodontic, Faculty of Dental Medicine, Universitas Airlangga, Surabaya - Indonesia.
2Resident of Prosthodontic, Faculty of Dental Medicine, Universitas Airlangga, Surabaya - Indonesia.
*Corresponding Author
Published In:
Volume - 14,
Issue - 9,
Year - 2021
ABSTRACT:
Objective: This study was to determine OPG and RANKL expression after hydroxyapatite (HA) scaffold from crab shells (Portunus pelagicus) application in tooth socket of Cavia cobaya. Methods: This study was a post-test only control group design. Twenty four Cavia cobaya was divided into 4 groups. The lower left incisor was extracted and given a combination of HA and gelatin scaffold. Experimental animals were sacrificed on the 7th and 14th day. The amount of OPG and RANKL expression was calculated under a light microscope at 1000x magnification. The statistical analysis was done by One Way ANOVA Test and Tukey HSD. Results: Compared to other groups, the lowest and the highest level of OPG and RANKL were in P14 group. Conclusion: HA scaffold from crab shells (Portunus pelagicus) can increase OPG expression and decrease RANKL expression in the process of regenerating alveolar bone after tooth extraction.
Cite this article:
Michael Josef Kridanto Kamadjaja, Sherman Salim, Birgitta Dwitya Swastyayana Subiakto. Application of Hydroxyapatite scaffold from Portunus pelagicus on OPG and RANKL expression after tooth extraction of Cavia cobaya. Research Journal of Pharmacy and Technology. 2021; 14(9):4647-1. doi: 10.52711/0974-360X.2021.00807
Cite(Electronic):
Michael Josef Kridanto Kamadjaja, Sherman Salim, Birgitta Dwitya Swastyayana Subiakto. Application of Hydroxyapatite scaffold from Portunus pelagicus on OPG and RANKL expression after tooth extraction of Cavia cobaya. Research Journal of Pharmacy and Technology. 2021; 14(9):4647-1. doi: 10.52711/0974-360X.2021.00807 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2021-14-9-21
REFERENCES:
1. Muntamah. Sintesis dan Karakterisasi Hidroksiapatit dari Limbah Cangkang Kerang Darah (Anadara granosa, sp). 2011; 4–6.
2. Abood FM, Conserv GAAHD, Witwit LJ, Hindi NKK, Khmra HKAA, Ali MRA. The occurrence of alveolar bone resorption with oral bacterial infection. Res J Pharm Technol. 2017; 10(6): 1997–2000.
3. Sushma Singh, Abhisek Pal SM. Nano Structure of Hydroxyapatite and its modern approach in Pharmaceutical Science. Res J Pharm Technol. 2019;12(3). doi: 10.5958/0974-360X.2019.00243.9.
4. Raya I, Mayasari E, Yahya A, Syahrul M, Latunra AI. Shynthesis and Characterizations of Calcium Hydroxyapatite Derived from Crabs Shells (Portunus pelagicus) and Its Potency in Safeguard against to Dental Demineralizations. Int J Biomater. 2015; 2015: 1–7.
5. Padmalochana K, Prema P. Enzymatic treatment for amino acid from crab shell waste and using it as micro–nutrient supplement for plant and microbial growth. Res J Pharm Technol. 2016; 9(8): 1217–1222.
6. Bonshikachatterjee, Nivetha A, Mohanasrinivasan V. Immobilization of β-galactosidase in chitosan-alginate composite scaffolds and optimization of lactose hydrolysis. Res J Pharm Technol. 2018; 11(4): 1480–1485.
7. Hendrijantini N, Kresnoadi U, Salim S, Agustono B, Retnowati E, Syahrial I, et al. Study Biocompatibility and Osteogenic Differentiation Potential of Human Umbilical Cord Mesenchymal Stem Cells (hUCMSCs ) with Gelatin Solvent. 2015; (January). doi:10.4236/jbise.2015.87039.
8. Agarwal S, Jhunjhunwala V, Priya G. Fabrication and morphological analysis of gelatin-alginate scaffolds. Res J Pharm Technol. 2018; 11(9): 3816–3818.
9. Kresnoadi U. The increasing of fibroblast growth factor 2, osteocalcin, and osteoblast due to the induction of the combination of Aloe vera and 2 % xenograft concelous bovine. Dent J. 2012; 45(4): 228–233.
10. Pižem J, Cör A. Survivin - an inhibitor of apoptosis and a new therapeutic target in cancer. Radio Oncol. 2003; 37(3): 195–201.
11. Yanuar V, Santoso J, Salamah E, Yanuar V, Santoso J, Salamah E, et al. Utilization of Crabs Shell (Portunus pelagicus) as Sources of Calcium and Phosphorus in Making of Crackers Product. J Pengolah Has Perikan. 2009; XII (2002): 59–72.
12. Panneerselvam R, Anandhan N, Ganesan KP, Marimuthu T, Paneerdoss IJ. Effect of concentration on nano hydroxyapatite powder by wet chemical precipitation route. Asian J Res Chem. 2018; 11(3): 545.
13. Kusrini E, Sontang M. Characterization of x-ray diffraction and electron spin resonance: Effects of sintering time and temperature on bovine hydroxyapatite. Radiat Phys Chem. 2012; 81(2): 118–125.
14. Keerthic Aswin S, Jothishwar S, Visvavela Chellaih Nayagam P GP. Scaffolds for Biomolecule Delivery and Controlled Release. Res J Pharm Technol. 2018; 11(10). doi: 10.5958/0974-360X.2018.00861.2.
15. Bose S, Roy M, Bandyopadhyay A. Recent advances in bone tissue engineering scaffolds. Trends Biotechnol. 2012; 30(10): 546–554.
16. Chen G, Deng C, Li Y. TGF- β and BMP Signaling in Osteoblast Differentiation and Bone Formation. Int J Biol Sci. 2012; 8(3): 272–288.
17. Girija C, Sivakumar MN. Amalgamation and characterization of hydroxyapatite powders from eggshell for functional biomedical application. Res J Pharm Technol. 2018; 11(10): 4242–4244.
18. Hengky A. Peran hidroksiapatit sebagai bone graft dalam proses penyembuhan tulang. Stomatognatik J Kedokt Gigi. 2011; 8(2): 118–121.
19. Selvi ST. Stem Cell Therapy. Int J Adv Nurs Manag. 2017; 5(4): 361.
20. Vieira AE, Repeke CE, Barros S De, Junior F, Colavite PM, Biguetti CC, et al. Intramembranous Bone Healing Process Subsequent to Tooth Extraction in Mice: Histomorphometric and Molecular Characterization. PLoS One. 2015; 10: 1–22.
21. Ma JH, Guo WS, Li ZR, Wang BL. Local Administration of Bisphosphonate ‑ soaked Hydroxyapatite for the Treatment of Osteonecrosis of the Femoral Head in Rabbit. Chin Med J (Engl). 2016; 129(21): 2559–2565.
22. Huang H, Williams RC, Kyrkanides S. Accelerated orthodontic tooth movement: Molecular mechanism. Am J Orthod Dentofac Orthop. 2014; 146(5): 620–632.
23. Yasuda, Hisataka; Shima, Nobuyuki; Nakagawa, Nobuaki; Yamaguchi, Kyoji; Kinosaki M et al. Osteoclast differentiation factor is a ligand for osteoprotegerin ͞ osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Cell Biol. 1998;95(March): 3597–3602.
24. Blair JM, Zhou H, Seibel MJ, Dunstan CR. Mechanisms of Disease: roles of OPG, RANKL and RANK in the pathophysiology of skeletal metastasis. Oncologi. 2006; 3(1): 41–49.