Author(s):
Ali Adel Dawood, Mahmood Abduljabar Altobje, Haitham Abdul-Malik Alnori
Email(s):
aad@uomosul.edu.iq , mahtsbio30@uomosul.edu.iq
DOI:
10.52711/0974-360X.2021.00828
Address:
Ali Adel Dawood1, Mahmood Abduljabar Altobje2, Haitham Abdul-Malik Alnori3
1Deptartment of Anatomy, College of Medicine, University of Mosul, Mosul, Iraq.
2Deptpartment of Biology, College of Science, University of Mosul, Mosul, Iraq.
3Department of Surgery, College of Medicine, University of Mosul, Mosul, Iraq.
*Corresponding Author
Published In:
Volume - 14,
Issue - 9,
Year - 2021
ABSTRACT:
A novel severe viral pneumonia emerged in Wuhan city, China, in December 2019. The spike glycoprotein of the SARS-CoV-2 plays a crucial role in the viral entry to the host cell and eliciting a strong response for antibody-mediated neutralization in mice. Caveolins 1,2 are scaffolding proteins dovetailed as a co-stimulatory signal essential for T-cell receptor and activation. Aminopeptidase is a membrane protein acting as a receptor for human coronavirus within the S1 subunit of the spike glycoprotein. Vaccines for COVID-19 have become a priority for predisposition against the outbreak, so that our study aimed to find interaction sites between SP of SARS-CoV-2 and CAV1, CAV2, and AMPN. Methods: Amino acids motif search was employed to predict the possible CAV1, CAV2, and AMPN related interaction domains in the SARS-CoV-2 SP In silico analysis. Results: Interactions between proteins revealed 5 and16 residues. ZN ligand binding site is matched between AMPN and SARS- CoV-2 SP. HLA-A*74:01 allele is the best CTL epitope for SP. We identified seven B-cell epitopes specifically for SARS-CoV-2 SP. Conclusions: SARS-CoV-2 SP binding sites might be compatible with AMPN ligand binding sites. The limit score was detected for ligand binding sites of CAV1 and CAV2. Our findings might be critical for the further substantial study of vaccine production strategy.
Cite this article:
Ali Adel Dawood, Mahmood Abduljabar Altobje, Haitham Abdul-Malik Alnori. Compatibility of the Ligand Binding Sites in the Spike Glycoprotein of COVID-19 with those in the Aminopeptidase and the Caveolins 1, 2 Proteins. Research Journal of Pharmacy and Technology. 2021; 14(9):4760-6. doi: 10.52711/0974-360X.2021.00828
Cite(Electronic):
Ali Adel Dawood, Mahmood Abduljabar Altobje, Haitham Abdul-Malik Alnori. Compatibility of the Ligand Binding Sites in the Spike Glycoprotein of COVID-19 with those in the Aminopeptidase and the Caveolins 1, 2 Proteins. Research Journal of Pharmacy and Technology. 2021; 14(9):4760-6. doi: 10.52711/0974-360X.2021.00828 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2021-14-9-42
REFERENCES:
1. Hou Y-x., Peng C., Han Z.G., Zhou P., Chen J-G., and Shi Z.I. Immunogenicity of the Spike Glycoprotein of Bat SARS-like Coronavirus. Virol. Sin. (2010). 25 (1):36-44. http://DOI 10.1007/s12250-010-3096-2.
2. Manisha R, Pradnya K. Coronavirus Disease: A Review of a New Threat to Public Health. Asian J. Pharm. Res. 2020; 10(3):241-244.
3. Mayur S. Jain, Shashikant D. Barhate. Corona viruses are a family of viruses that range from the common cold to MERS corona virus: A Review. Asian J. Res. Pharm. Sci. 2020; 10(3):204-210.
4. Li W., Moore M.J., Vasilieva N., Sui J., Wong S.K., Berne M.A., Somasundaran M., Sullivan J.L., Luzuriaga K., Greenough T.C., Choe H., and Farzan M. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. (2003). Nat. 426, p: 450–454.
5. Nikhat Farhana, Thouheed Ansari, Moid Ansari. Sars-CoV-2leader-RNA-primed Transcription and RNA-Splicing prevention, control and Treatment. Asian J. Research Chem. 2020; 13(4):291-298.
6. Zhou Z., Post P., Chubet R., Holtz K., McPherson C., Petric M., and Cox M. A recombinant baculovirus-expressed S glycoprotein vaccine elicits high titers of SARS-associated coronavirus. Vac. (2006). P: 3624–3631. DOI:10.1016/j.vaccine.2006.01.059.
7. Akshay R. Yadav, Shrinivas K. Mohite. A Novel Approach for Treatment of COVID-19 with Convalescent Plasma. Res. J. Pharma. Dosage Forms and Tech.2020; 12(3):227-230.
8. Ou X., Liu Y., Lei X., Li P., Mi D., Ren L., Guo L., Guo R., Chen T., Hu J., Xiang Z., Mu Z., Chen X., Chen J., Hu K., Jin Q., Wang J., and Qian Z. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune .cross-reactivity with SARS-CoV. Nat.Commu. (2020). 11:1620.
9. Dawood A, Altobje M. Inhibition of N-linked Glycosylation by Tunicamycin May Contribute to The Treatment of SARS-CoV-2. Microbiol Path. 2020; 149:104586.
10. Escriou N., Callendret B., Lorin V., Combredet C., Marianne A., Février M., and Tangy F. Protection from SARS coronavirus conferred by live measles vaccine expressing the spike glycoprotein. Virol. 452-453 (2014) 32–41,
11. Dawood A, Alnori H. Tunicamycin Anticancer Drug May Reliable to Treat Coronavirus Disease-19. OAMJMS. 2020; 8(T1):129-133.
12. Bergeron, E., Vincent, M.J., Wickham, L., Hamelin, J., Basak, A., Nichol, S.T., Chretien, M., Seidah, N.G. Implication of proprotein convertases in the processing and spread of severe acute respiratory syndrome coronavirus. Biochem. Biophys. Res. Commun. (2005). 326, 554–563.
13. Wrap D., Wang N., Corbett K.S., Goldsmith J.A., Hsieh C-L., Abiona O., Graham B.S., and McLellan S.J. Cryo-EM Structure of the 2019-nCoV Spike in the Prefusion Conformation. https://doi.org/10.1101/2020.02.11.944462.
14. Walls A.C., Tortorici M.A., Snijder J., Xiong X., Bosch B-J., Rey F.A., and Veesler D. Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion. PNAS. (2017). vol. 114, no. 42, 11157–11162.
15. Dawood A. Identification of CTL and B-cell epitopes in the Nucleocapsid Phosphoprotein of COVID-19 using Immunoinformatics. Microbiol J. 2021; 83(1): 78-86.
16. Schoeman and B.C. Fielding. Coronavirus envelope protein: current Knowledge. Virol. J. (2019). 16:69. https://doi.org/10.1186/s12985-019-1182-0.
17. Smart EJ., Graf GA., McNiven MA., Sessa WC., Engelman JA., Scherer PE., et al. Caveolins, liquid-ordered domains, and signal transduction. Mol. Cell. Biol. (1999); 19: 7289- 304.
18. Tresnan DB., Levis R., Holmes KV. Feline Aminopeptidase N (CD13) serves as a receptor for feline, canine, porcine, and human coronaviruses in serogroup I. J Virol. (1996); 70: 8669– 74.
19. Xiao X., Chakraborti S., Dimitrov AS., Gramatikoff K., Dimitrov DS. The SARS-CoV S glycoprotein: expression and functional characterization. Biochem. Biophys. Res. Commun. (2003); 312: 1159–64.
20. Pankaj S, Pankaj M, Pushpendra K, Himanshu J. Turmeric: Plant Immunobooster against COVID-19. Res. J. Pharmacognosy and Phytochem. 2020; 12(3):174-177.
21. Kiran T, Latha A, Sureshkumar J, and Reddy E. Novel Coronavirus. Res. J. Pharmacology and Pharmacodynamics.2020; 12(2): 64-70.
22. Follis K.E., York J., and Nunberg J.H. Furin cleavage of the SARS coronavirus spike glycoprotein enhances cell-cell fusion but does not affect virion entry. Virol. (2006) 358–369. https:// DOI:10.1016/j.virol.2006.02.003.
23. Dawood A. Mutated COVID-19, May Foretells Mankind in a Great Risk in The Future. N. Mic. N. Inf. (2020). Vol. (35) https://doi.org/10.1016/j.nmni.2020.100673.
24. Quan-Cai C., Qing-Wu J., Gen-Ming Z., Qiang G., Guang-Wen C., and Teng C. Putative caveolin-binding sites in SARS-CoV proteins. Act. Pharm. Sin. (2003). 24 (10): 1051-1059.
25. Xiao-Jing Y., Cheng L., Jian-Cheng L., Pei H., Ou-Y., Zong-Ming G., Lei Q., Jiong S., Bo- Shu L., Yin H., Peng N., Chuan-Song L., Bin X., Xiao-Min L., Guo-Ping Z., Gang P., Kai-Xian C., Xu S., Jian-Hua S., Jian-Ping Z., Wei-Zhong H., Tie-Liu S., Yang Z., Hua-Liang J., and Yi- Xue L. Putative hAPN receptor binding sites in SARS_CoV spike protein. Act. Pharm. Sin. (2003). 24 (6): 481- 488.
26. Larsen M.V., Lundegaard C., Lamberth K., Buus S., Brunak S., and Lund O., and Nielsen M. An integrative approach to CTL epitope prediction: A combined algorithm integrating MHC class I binding, TAP transport efficiency, and proteasomal cleavage predictions. Eur. J. Immunol. (2005). 35:2295–2303. http://DOI 10.1002/eji.200425811.
27. Dawood A. Glycosylation, ligand binding sites and antigenic variations between membrane glycoprotein of COVID-19 and related coronaviruses. Vacunas. 2021; 22(1): 1-9.
28. Baruah V., Bose S. Immunoinformatics‐ aided identification of T cell and B cell epitopes in the surface glycoprotein of 2019‐ nCoV. J Med Virol. (2020). 92:495–500. http://DOI: 10.1002/jmv.25698.
29. Dawood A., Altobje M., Alrassam Z. Molecular Docking of SARS-CoV-2 Nucleocapsid Protein with Angiotensin-Converting Enzyme II. Mikrobiolohichnyi Zhurnal. (2021). 83(2):82-92.
30. Nielsen M., Lundegaard C., Lund O., and Kesmir C. The role of the proteasome in generating cytotoxic T-cell epitopes: insights obtained from improved predictions of proteasomal cleavage. Immunogen. (2005). 57, p: 33–41.
31. Lorin C., Mollet L., Delebecque F., Combredet C., Hurtrel B., Charneau P., Brahic M., Tangy F. A single injection of recombinant measles virus vaccines expressing human immunodeficiency virus (HIV) type 1 clade B envelope glycoproteins induces neutralizing antibodies and cellular immune responses to HIV. J. Virol. (2004). 78, 146–157.
32. Dawood A. Identification of CTL and B-cell epitopes in the Nucleocapsid Phosphoprotein of COVID-19 using Immunoinformatics. Microbiol J. 2021; 83(1): 78-86.