Author(s): A. Anto Arockia Raj, J. Vinnarasi

Email(s): ,

DOI: 10.52711/0974-360X.2021.00854   

Address: A. Anto Arockia Raj1*, J. Vinnarasi2
1Department of Chemistry, St. Xavier’s College (Autonomous), Palayamkottai, Tamil Nadu, India – 627002.
2Department of Chemistry, The Standard Fireworks Rajaratnam College for Women (Autonomous), Sivakasi, Tamil Nadu, India – 626123.
*Corresponding Author

Published In:   Volume - 14,      Issue - 9,     Year - 2021

In 2019 severe acute respiratory syndrome (SARS) - associated with coronavirus is a new highly pathogenic human coronaviruses that emerged in china and has quickly spread all over the world. The mortality rate is about 26% globally. This has resulted in an urgent need to identify antiviral drugs that are active against SARS-Covid -19. Several compounds extracted from natural product and herbs exhibit antiviral activity. In the present study, eight compounds from natural products and five antiviral drugs have selected and docked against SARS-CoV-2. Curcuminoid are chief constituent of turmeric, has been used as a food additive and herbal increment due to its potential medicinal behavior. Curcumin has shown better antiviral effect against dengue, hepatitis C, zika and chikungunya viruses earlier. The molecular docking for exploring the binding abilities between naturally obtained known compounds comparable with Oseltamivir, Remdesivir, hydroxychloroquine, Zanamivir and Ribavirin against SARS-CoV-2, whose results may be used to design potential drug to meet out the need of the hour. The results showed that bismethoxycurcumin, demethoxycurcumin and gedunin have comparable high binding pose energies against SARS-CoV-2. We anticipate that these molecules may lead to the design or discovery of new effective actions for SARS-CoV-2.

Cite this article:
A. Anto Arockia Raj, J. Vinnarasi. Natural Potential Inhibitors for Covid 19 – An Insilico Approach. Research Journal of Pharmacy and Technology. 2021; 14(9):4913-9. doi: 10.52711/0974-360X.2021.00854

A. Anto Arockia Raj, J. Vinnarasi. Natural Potential Inhibitors for Covid 19 – An Insilico Approach. Research Journal of Pharmacy and Technology. 2021; 14(9):4913-9. doi: 10.52711/0974-360X.2021.00854   Available on:

1.    World Health Organization. Communicable Disease Surveillance and Response. Summary of probable SARS cases with onset of illness from 1 November 2002 to 31 July 2003, 2003
2.    Drosten C, Gunther S, Preiser W, van der Werf S, Brodt HR, Becker S, Rabenau H, Panning M, Kolesnikova L, Fouchier R A, Berger A, Burguiere A M, Cinatl J, Eickmann M, Escriou N, Grywna K, Kramme S, Manuguerra JC, Muller S, Rickerts V, Sturmer M, Vieth S, Klenk HD, Osterhaus AD, Schmitz H, Doerr HW. Identification of a novel coronavirus in patients with severe acute respiratory syndrome.  N Engl J Med. 2003; 348:1967.
3.    Ksiazek TG, Erdman D, Goldsmith CS, Zaki SR, Peret T, Emery S, Tong S, Urbani C, Comer JA, Lim W, Rollin PE, Dowell SF, Ling AE, Humphrey CD, Shieh WJ, Guarner J, Paddock CD, Rota P, Fields B, DeRisi J, Yang JY, Cox N, Hughes JM, LeDuc JW, Bellini WJ, Anderson LJ. SARS Working Group, A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med. 2003; 348: 1953.
4.    Kuiken T, Fouchier RA, Schutten M, Rimmelzwaan GF, van Amerongen G, van Riel D, Laman JD, de Jong T, van Doornum G, Lim W, Ling AE, Chan PK, Tam JS, Zambon MC, Gopal R, Drosten C, van der Werf S, Escriou N, Manuguerra JC, Stohr K, Peiris JS, Osterhaus AD. Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome. Lancet, 2003; 362 (9380): 263.
5.    Peiris JS, Lai ST, Poon LL, Guan Y, Yam LY, Lim W, Nicholls J, Yee WK, Yan WW, Cheung MT, Cheng VC, Chan KH, Tsang DN, Yung RW, Ng TK, Yuen KY.  Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet. 2003; 361: 1319.
6.    Rota PA, Oberste MS, Monroe SS, Nix WA, Campagnoli R, Icenogle JP, Penaranda S, Bankamp B, Maher K, Chen MH, Tong S, Tamin A, Lowe L, Frace M, Derisi JL, Chen Q, Wang D, Erdman DD, Peret TCD, Burns C, Ksiazek TG, Rollin PE, Sanchez A, Liffick S, Holloway B, Limor J, McCaustland K, Olsen-Rasmussen M, Fouchier R, Gunther S, Osterhaus AD, Drosten C, Pallansch MA, Anderson LJ, Bellini WJ. Coronavirus as a possible cause of severe acute respiratory syndrome. Science. 2003; 300(5624): 1394.
7.    Marra MA, Jones SJM, Astell CR, Holt RA, Brooks- Wilson A, Butterfield YSN, Khattra J, Asano JK, Barber SA, Chan SY, Cloutier A, Coughlin S M, Freeman D, Girn N, Griffith OL, Leach SR, Mayo M, McDonald H, Montgomery SB, Pandoh PK, Petrescu AS, Robertson , Schein JE, Siddiqui A, Smailus DE, Stott JM, Yang GS, Plummer F, Andonov A, Artsob H, Bastien N, Bernard K, Booth TF, Bowness D, Czub M, Drebot M, Fernando L, Flick R, Garbutt M, Gray M, Grolla A, Jones S, Feldmann H, Meyers A, Kabani A, Li Y, Normand S, Stroher U, Tipples GA, Tyler S, Vogrig R, Ward D, Watson B, Brunham RC, Krajden M, Petric M, Skowronski D, Upton C , Roper R. The genome sequence of the SARS-associated coronavirus Science. 2003; 300(5624): 1399.
8.    Hilgenfeld R, Peiris M. From SARS to MERS: 10 years of research on highly pathogenic human coronaviruses.Antiviral Res. 2013; 100 (1): 286.
9.    Anderson LJ, Baric RS. Emerging human coronaviruses – disease potential and preparedness. N Engl J Med 2002; 367: 1850.  
10.    Chan J F, Chan KH, Kao RY, To KK, Zheng BJ, Li CP, Li PT, Dai J, Mok FK, Chen H, Hayden FG, Yuen KY. Broad-spectrum antivirals for the emerging Middle East respiratory syndrome coronavirus. J Infect. 2013; 67: 606.
11.    Zaki AM, Van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med. 2012; 367: 1814.
12.    Eckerle I, Muller MA, Kallies S, Gotthardt DN, Drosten C, In-vitro renal epithelial cell infection reveals a viral kidney tropism as a potential mechanism for acute renal failure during Middle East respiratory syndrome (MERS) coronavirus infection. Virol J, 10 (359) (2013) 359.
13. csr/don/17-december-2014-mers/en/
14.    Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, Niu P, Zhan F, Ma X, Wang D, Xu W, Wu G, Gao GF, Tan W, China Novel Coronavirus Investigating and Research Team. A novel coronavirus from patients with pneumonia in China 2019. N Engl J Med. 2020; 382: 727.
16.    Newman DJ, Cragg GM, Snader KM. Natural products as sources of new drugs over the period. J Nat Prod. 2003; 66 (7): 1022-1037.
17.    Pandit S, Kim H, Kim J, Jeon J. Separation of an effective fraction from turmeric against Streptococcus mutans biofilms by the comparison of Curcuminoid content and anti-acidogenic activity Food Chem. 2011; 126 (4): 1565.
18.    Chaturvedi TP, Uses of turmeric in dentistry: an update. Indian J Dent Res. 2009; 20(1): 107.
19.    Perko T, Ravber M, Knez Z, Skerget M. Isolation, characterization and formulation of curcuminoids and in vitro release study of the encapsulated particles. J Super crit Fluids. 2015; 103: 48.
20.    Mukerjee A, Vishwanatha JK. Formulation, characterization and evaluation of curcumin-loaded PLGA nanospheres for cancer therapy. Anticancer Res. 2009; 29(10): 3867.
21.    Changtam C, de Koning HP, Ibrahim H, Sajid MS, Gould MK, Suksamrarn A. Curcuminoid analogs with potent activity against Trypanosoma and Leishmania species. Eur J Med Chem. 2010; 45 (3): 941.
22.    Kalpravidh RW, Siritanaratkul N, Insain P. Improvement in oxidative stress and antioxidant parameters in b-thalassemia/Hb E patients treated with curcuminoids. Clin Biochem. 2010; 43(4-5): 424.
23.    Tapal A, Tiku PK. Complexation of curcumin with soy protein isolate and its implications on solubility and stability of curcumin. Food Chem. 2012; 130(4): 960.
24.    Khan MA, El-Khatib R, Rainsford KD, Whitehouse MW. Synthesis and anti-inflammatory properties of some aromatic and heterocyclic aromatic curcuminoids. Bioorg Chem. 2012; 40: 30.
25.    Lim HS, Park SH, Ghafoor K, Hwang SY, Park J. Quality and antioxidant properties of bread containing turmeric (Curcuma longa L.) cultivated in South Korea. Food Chem. 2011; 124(4): 1577-1582.
26.    Panahi Y, Saadat A, Beiraghdar F, Nouzari SMH, Jalalian HR, Sahebkar A. Antioxidant effects of bioavailability-enhanced curcuminoids in patients with solid tumors: a randomized double-blind placebo-controlled trial. J Funct Foods. 2014; 6: 615.
27.    Aditya NP, Chimote G, Gunalan K, Banerjee R, Patankar S, Madhusudhan B. Curcuminoids-loaded liposomes in combination with arteether protects against Plasmodium berghei infection in mice. Exp Parasitol. 2012; 131(3): 292.
28.    Yue GGL, Chan BCL, Hon P. Immunostimulatory activities of polysaccharide extract isolated from Curcuma longa. Int J Biol Macromol. 2010; 47(3): 342.
29.    Peret-Almeida L, Cherubino APF, Alves RJ, Dufosse L, Gloria M B A. Separation and determination of the physico-chemical characteristics of curcumin, demethoxy curcumin and bisdemethoxycurcumin. Food Res Int. 2005; 38(8-9): 1039-1044.
30.    Zhan PY, Zeng XH, Zhang H M, Li HH. High-efficient column chromatographic extraction of curcumin from Curcuma longa. Food Chem. 2011; 129(2): 700-703.
31.    Ou JL, Mizushina Y, Wang SY, Chuang DY, Nadar M, Hsu WJ. Structure-activity relationship analysis of curcumin analogues on anti-influenza virus activity. FEBS J. 2013; 208(22): 5829.
32.    Siviero A, Gallo E, Maggini V. Curcumin, a golden spice with a lowbioavailability. Herb Med. 2015; 5: 57.
33.    Mahmood K, Zia KM, Zuber M, Salman M, Anjum MN. Recent developments in curcumin and curcumin based polymeric materials for biomedical applications: A Review. Int J Biol Macromol. 2015; 81: 877.
34.    Kher A, Chaurasia SC. Antifungal activity of essential oils of three medical plants. Indian Drugs. 1997; 15: 41.
35.    Singh N, Sastry MS. Antimicrobial activity of Neem oil. Indian Journal of Pharmacology. 1997; 13: 102–106.
36.    Bandyopadhyay U, Biswas K, Sengupta A. Clinical studies on the effect of Neem (Azadirachta indica) bark extract on gastric secretion and gastroduodenal ulcer. Life Sciences. 2004; 75: 2867–2878.
37.     Sultana B, Anwar F, Przybylski R. Antioxidant activity of phenolic components present in barks of Azadirachta indica, Terminalia arjuna, Acacia nilotica, and Eugenia jambolana Lam. trees, Food Chemistry. 2007; 104: 1106–1114.     
38.    Ebong PE, Atangwho IJ, Eyong EU, Egbung GE. The antidiabetic efficacy of combined extracts fromtwo continental plants: Azadirachta indica (A. Juss) (Neem) and Vernonia amygdalina (Del.) (African Bitter Leaf). The American Journal of Biochemistry and Biotechnology. 2008; 4: 239–244.
39.    Paul R, Prasad M, Sah NK. Anticancer biology of Azadirachta indica L (neem): a mini review, Cancer Biology and Therapy. 2011; 12: 467–476.
40.    Han YA, Song CW, Koh WS, Yon GH, Kim YS, Ryu SY, Kwon HI, Lee KH. Anti-inflammatory effects of the Zingiber officinale Roscoe constituent 12-dehydrogingerdione in lipopolysaccharide-stimulated raw 264.7 cells. Phytother. Res. 27 (2013) 1200–1205.
41.    Stoner GD. Ginger: Is it ready for prime time? Cancer Prev. Res. 2013; 6: 257–262
42.    Nile SH, Park SW. Chromatographic analysis, antioxidant, anti-inflammatory, and xanthine oxidase inhibitory activities of ginger extracts and its reference compounds. Ind. Crop. Prod. 2015; 70: 238–244.
43.    Citronberg J, Bostick R, Ahearn T, Turgeon DK, Ruffin MT, Djuric Z, Sen A, Brenner DE, Zick SM. Effects of ginger supplementation on cell-cycle biomarkers in the normal-appearing colonic mucosa of patients at increased risk for colorectal cancer: Results from a pilot, randomized, and controlled trial. Cancer Prev. Res. 2013; 6: 271–281.
44.    Kumar NV, Murthy PS, Manjunatha JR, Bettadaiah BK. Synthesis and quorum sensing inhibitory activity of key phenolic compounds of ginger and their derivatives. Food Chem. 2014; 159: 451–457.
45.    Zhang M, Viennois E, Prasad M, Zhang Y, LWang, Zhang Z, Han MK, Xiao B, Xu C, Srinivasan S. Edible ginger-derived nanoparticles: A novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer. Biomaterials. 2016; 101: 321–340.
46.    Suk S, Kwon GT, Lee E, Jang WJ, Yang H, Kim JH, ThimmegowdaNR, Chung M, Kwon JY, Yang S. Gingerenone A, a polyphenol present in ginger, suppresses obesity and adipose tissue inflammation in high-fat diet-fed mice. Mol. Nutr. Food Res. 2017; 61: 1700139.
47.    Ho S, Chang K, Lin C.Anti-neuroinflammatory capacity of fresh ginger is attributed mainly to 10-gingerol. Food Chem. 2013; 141: 3183–3191.
48.    Walstab J, Krueger D, Stark T, Hofmann T, Demir IE, Ceyhan GO, Feistel B, Schemann M, Niesler B. Ginger and its pungent constituents non-competitively inhibit activation of human recombinant and native 5-HT3 receptors of enteric neurons. Neurogastroent. Motil. 2013; 25: 439–447.
49.    Akinyemi AJ, Thome GR, Morsch VM, Stefanello N, Goularte JF, Bello-Klein A, Oboh G, Chitolina MR Schetinger. Effect of dietary supplementation of ginger and turmeric rhizomes on angiotensin-1 converting enzyme (ACE) and arginase activities in L-NAME induced hypertensive rats. J. Funct. Foods. 2015; 17: 792–801.
50.    Wei C, Tsai Y, Korinek M, Hung P, El-Shazly M, Cheng M, Wu Y, Hsieh T, Chang F. 6-Paradol and 6-shogaol, the pungent compounds of ginger, promote glucose utilization in adipocytes and myotubes, and 6-paradol reduces blood glucose in high-fat diet-fed mice. Int. J. Mol. Sci. 2017; 18: 168.
51.    Townsend EA, Siviski ME, Zhang Y, Xu C, Hoonjan B, Emala CW.Effects of ginger and its constituents on airway smooth muscle relaxation and calcium regulation. Am. J. Resp. Cell Mol. 2013; 48: 157–163.
52.    Parthasarathy VA, Chempakam B, Zachariah TJ. Chemistry of spices, London: CABI, 2008.
53.    Pruthi JS. Major spices of India: crop management and post-harvest technology, Indian Council of Agricultural Research, New Delhi, India, 1993.
54.    Darshan S, Doreswamy R. Patented antiinflammatory plant drug development from traditional medicine, Phytother Res. 2004; 18: 343–57.
55.    Yang YC, Lee SG, Lee HK, Kim MK, Lee SH, Lee HS. A piperidine amide extracted from Piper longum L. fruit shows activity against Aedes aegypti mosquito larvae. J Agric Food Chem. 2002; 50: 3765–7.
56.    Bai YF, Xu H. Protective action of piperine against experimental gastric ulcer. Acta Pharmacol Sin. 2000; 21 357–9.
57.    Raman G, Gaikar VG. Microwave-assisted extraction of piperine from Piper nigrum. Ind Eng Chem Res. 2202b; 41: 2521–8.
59.    Warren TK, Jordan R, Lo MK, Ray AS, Mackman RL, Soloveva V, Siegel D, Perron M, Bannister R, Hui HC, Larson N, Strickley R, Wells J, Stuthman KS, Van Tongeren SA, Garza NL, Donnelly G, Shurtleff AC, Retterer CJ, Gharaibeh D, Zamani R, Kenny T, Eaton BP, Grimes E, Welch LS, Gomba L, Wilhelmsen CL, Nichols DK, Nuss JE, Nagle ER, Kugelman JR, Palacios G, Doerffler E, Neville S, Carra E, Clarke MO, Zhang L, Lew W, Ross B, Wang Q, Chun K, Wolfe L, Babusis D, Park Y, Stray KM, Trancheva I, Feng JY, Barauskas O, Xu Y, Wong Y, Braun MR, Flint M, McMullan LK, Chen SS, Fearns R, Swaminathan S, Mayers DL, Spiropoulou CF, Lee WA, Nichol ST, Cihlar T, Bavari S.Therapeutic efficacy of the small molecule GS-5734 against Ebila virus in rhesus monkeys. Nature. 2016; 531: 381-385.
60.    Sheahan TP, Sims AC, GrahamRL, Menachery VD, Gralinski LE, Case JB, Leist SR, Pyrc K, Feng JY, Trantcheva I, Bannister R, Park Y, Babusis D, Clarke MO, Mackman RL, Spahn JE, Palmiotti CA, Siegel D, Ray AS, Cihlar T, Jordan R, Denison MR, Baric RS. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Sci Transl Med. 2017; 9: l3653,
61.    De Wit E, Feldmann F, Cronin J, Jordan R, Okumura A, Thomas T. Prophylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infection. Proc Natl Acad Sci. 2020; 117: 6771–6776.
62.     FDA Approved Drug Products: Hydroxychloroquine Oral Tablets [Link]
63.     Devaux CA, Rolain JM, Colson P, Raoult D. New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19?. 2020; 12:105938.
65.    FDA: Emergency Use Authorization [Link]
67.    Fearon D, Owen CD, Douangamath A, Lukacik P, Powell AJ, Strain-Damerell CM, Resnick E, Krojer T, Gehrtz P, Wild C, Aimon A, Brandao-Neto J, Carbery A, Dunnett L, Skyner R, Snee M, London N, Walsh MA, PanDDA analysis group deposition of SARS-CoV-2 mainprotease fragment screen. 10.2210/pdb5RE5/pdb.
68.    Thompson M. Argus Lab 4.0.1., Planaria software LLC, Seattle, Wash, USA, 2004.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

56th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Recent Articles


Not Available