Author(s): Raad D. Al-Obaidi, Hussein O.M. Al-Dahmoshi

Email(s): dr.dahmoshi83@gmail.com

DOI: 10.52711/0974-360X.2022.00768   

Address: Raad D. Al-Obaidi1, Hussein O.M. Al-Dahmoshi2*
1,2Biology Dept., College of Science, University of Babylon, Iraq.
*Corresponding Author

Published In:   Volume - 15,      Issue - 10,     Year - 2022


ABSTRACT:
Background: P. aeruginosa is considered as opportunistic bacteria that has ventilator-associated pneumonia (VAP), central line-associated bloodstream infections, ICU infections and surgical site infections. Objective: The aim is to investigate the virulence-associated proteins among P. aeruginosa that. Materials and Methods: A total of 60 Pseudomonas aeruginosa (P. aeruginosa) isolates have been recovered from seven different pecimentypes (1 CSF, 1 Pharyngeal swab, 11 ear swabs, 2 High vaginal swabs, 12 Broncoalveolar lavage, 12 wound swab, and 21 midstream urine) over the course of five months, from Sep 2019 to Jan 2020. Pseudomonas chromogenic agar was used to screen all isolates, and PCR-sequencing utilizing universal 16S rRNA gene primer was used to confirm them. Results: Patients with cystitis had a significant P aeruginosa percentage, with 21/60(35%), wound infection (12/60(20%), lower respiratory tract infection (12/60(20%), and otitis media 11/60(18.30%), whereas bacterial vaginosis had 2/60 (3.3%), meningitis and pharyngitis had 1/60(1.7%), each. The results of the bio-film formation utilizing tissue culture plate approach (TCP) indicated that 51/60(85%) have been bio-film former, whereas 9/60 (15%) have been non-biofilm former. Conclusions: The results showed that 57/60 (95%) of isolates have Ecotin, AprA, HasAp and ToxA. 58/60 (96.67%) of isolates have ExoT, EstA and PlpD. ExoS was present in 41/60(68.33%) while ExoU, ExoY, PldA and PldB were present in 34/60(56.67%), 59/60(98.33%), 53/60(88.33%) and 55/60(91.67%) of isolates respectively.


Cite this article:
Raad D. Al-Obaidi, Hussein O.M. Al-Dahmoshi. Molecular Study of Secretion Systems Virulence Protein among Pseudomonas aeruginosa Isolated from different Clinical samples. Research Journal of Pharmacy and Technology 2022; 15(10):4577-3. doi: 10.52711/0974-360X.2022.00768

Cite(Electronic):
Raad D. Al-Obaidi, Hussein O.M. Al-Dahmoshi. Molecular Study of Secretion Systems Virulence Protein among Pseudomonas aeruginosa Isolated from different Clinical samples. Research Journal of Pharmacy and Technology 2022; 15(10):4577-3. doi: 10.52711/0974-360X.2022.00768   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2022-15-10-41


REFERENCES:
1.    Cohen R, Babushkin F, Cohen S, Afraimov M, et al. A prospective survey of Pseudomonas aeruginosa colonization and infection in the intensive care unit. Antimicrobial Resistance and Infection Control. 2017; 6(1): 7. DOI 10.1186/s13756-016-0167-7
2.    Fournier A, Voirol P, Krähenbühl M, Bonnemain CL, et al. Antibiotic consumption to detect epidemics of Pseudomonas aeruginosa in a burn centre: A paradigm shift in the epidemiological surveillance of Pseudomonas aeruginosa nosocomial infections. Burns. 2016; 42(3): 564-570. DOI: 10.1016/j.burns.2015.10.030
3.    Tseng, B.S., Reichhardt, C., Merrihew, G.E., Araujo-Hernandez, S.A., Harrison, J.J., MacCoss, M.J. and Parsek, M.R., 2018. A biofilm matrix-associated protease inhibitor protects Pseudomonas aeruginosa from proteolytic attack. MBio, 9(2). DOI: 10.1128/mBio.00543-18
4.    Schaible B, Crifo B, Schaffer K, Taylor CT. The putative bacterial oxygen sensor Pseudomonas prolyl hydroxylase (PPHD) suppresses antibiotic resistance and pathogenicity in Pseudomonas aeruginosa. Journal of Biological Chemistry. 2020; 295(5): 1195-1201. DOI: 10.1074/jbc.RA119.010033
5.    Ireland PM, Marshall L, Norville I, Sarkar-Tyson M. The serine protease inhibitor Ecotin is required for full virulence of Burkholderiapseudomallei. Microbial pathogenesis. 2014; 67: 55-58. DOI: 10.1016/j.micpath.2014.01.001
6.    Wolska K, Szweda P. Genetic features of clinical Pseudomonas aeruginosa strains. Polish Journal of Microbiology. 2009; 58(3): 255-60.
7.    Vareechon, C., Zmina, S.E., Karmakar, M., Pearlman, E. and Rietsch, A., 2017. Pseudomonas aeruginosa effector ExoS inhibits ROS production in human neutrophils. Cell host and microbe, 21(5), pp.611-618. DOI: 10.1016/j.chom.2017.04.001
8.    Boulant, T., Boudehen, Y.M., Filloux, A., Plesiat, P., Naas, T. and Dortet, L., 2018. Higher prevalence of PldA, a Pseudomonas aeruginosa trans-kingdom H2-Type VI secretion system effector, in clinical isolates responsible for acute infections and in multidrug resistant strains. Frontiers in microbiology, 9, p.2578.DOI: 10.3389/fmicb.2018.02578
9.    Spilker T, Coenye T, Vandamme P, LiPuma JJ. PCR-based assay for differentiation of Pseudomonas aeruginosa from other Pseudomonas species recovered from cystic fibrosis patients. Journal of Clinical Microbiology. 2004; 42(5):2074-9. doi: 10.1128/jcm.42.5.2074-2079.
10.    Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing. 29th ed CLSI Supplement M100; 2019.
11.    Sambrook J, Russell DW. Agarose gel electrophoresis. Cold Spring Harbor Protocols. 2006; 1: pdb-rot4020.
12.    Kamali E, Jamali A, Ardebili A, Ezadi F, Mohebbi A. Evaluation of antimicrobial resistance, biofilm forming potential, and the presence of biofilm-related genes among clinical isolates of Pseudomonas aeruginosa. BMC Research Notes. 2020; 13(1): 27. DOI: 10.1186/s13104-020-4890-z
13.    Motbainor H, Bereded F, Mulu W. Multi-drug resistance of blood stream, urinary tract and surgical site nosocomial infections of Acinetobacterbaumannii and Pseudomonas aeruginosa among patients hospitalized at Felegehiwot referral hospital, Northwest Ethiopia: a cross-sectional study. BMC Infectious Diseases. 2020; 20(1): 92. DOI: 10.1186/s12879-020-4811-8
14.    Karami P, Khaledi A, Mashoof RY, Yaghoobi MH, et al. The correlation between biofilm formation capability and antibiotic resistance pattern in Pseudomonas aeruginosa. Gene Reports. 2020; 18: 100561. DOI: 10.1016/j.genrep.2019.100561
15.    Solanki M, Mehta KD, Sinha M. Pseudomonas aeruginosa in Nosocomial Infection: Burden in Surgical Site of Tertiary Care Unit. International Journal of Current in Microbiology and Applied Sciences. 2018; 7(5): 2746-2750.
16.    Aljebory IS. PCR Detection of Some Virulence Genes of Pseudomonas aeruginosa in Kirkuk city, Iraq. Journal of Pharmaceutical Sciences and Research. 2018; 10(5): 1068-1071.
17.    Fung C, Naughton S, Turnbull L, Tingpej P, et al. Gene expression of Pseudomonas aeruginosa in a mucin-containing synthetic growth medium mimicking cystic fibrosis lung sputum. Journal of medical microbiology. 2010; 59(Pt 9):1089-1100.  doi: 10.1099/jmm.0.019984-0.
18.    Reichhardt C, Parsek M. Confocal laser scanning microscopy for analysis of Pseudomonas aeruginosa biofilm architecture and matrix localization. Frontiers in microbiology. 2019; 10: 677. DOI: 10.3389/fmicb.2019.00677
19.    Badamchi A, Masoumi H, Javadinia S, Asgarian R, Tabatabaee A. Molecular detection of six virulence genes in Pseudomonas aeruginosa isolates detected in children with urinary tract infection. Microbial pathogenesis. 2017; 107: 44-47.DOI: 10.1016/j.micpath.2017.03.009
20.    Sarkisova S, Patrauchan MA, Berglund D, Nivens DE. Franklin MJ. Calcium-induced virulence factors associated with the extracellular matrix of mucoidPseudomonas aeruginosa biofilms. Journal of bacteriology. 2005; 187(13): 4327-4337. DOI: 10.1128/JB.187.13.4327-4337.2005
21.    Thöming JG, Tomasch J, Preusse M, Koska M, et al. Parallel evolutionary paths to produce more than one Pseudomonas aeruginosa biofilm phenotype. NPJ biofilms and microbiomes. 2020; 6(1): 1-13. DOI: 10.1038/s41522-019-0113-6
22.    Wolf P, Elsässer-Beile U. Pseudomonas exotoxin A: from virulence factor to anti-cancer agent. International Journal of Medical Microbiology. 2009; 299(3): 161-176.
23.    Toska J, Sun Y, Carbonell DA, Foster ANS, et al. Diversity of virulence phenotypes among type III secretion negative Pseudomonas aeruginosa clinical isolates. PloS one. 2014; 9(1): e86829. DOI: 10.1371/journal.pone.0086829
24.    Park, M.H., Kim, S.Y., Roh, E.Y. and Lee, H.S., 2017. Difference of Type 3 secretion system (T3SS) effector gene genotypes (exoU and exoS) and its implication to antibiotics resistances in isolates of Pseudomonas aeruginosa from chronic otitis media. AurisNasus Larynx, 44(3), pp.258-265.DOI: 10.1016/j.anl.2016.07.005
25.    Belyy A, Raoux-Barbot D, Saveanu C, Namane A, et al. Actin activates Pseudomonas aeruginosa ExoYnucleotidylcyclase toxin and ExoY-like effector domains from MARTX toxins. Nature communications. 2016; 7(1): 1-14. DOI: 10.1038/ncomms13582
26.    Bleves S, Viarre V, Salacha R, Michel GP, et al. Protein secretion systems in Pseudomonas aeruginosa: a wealth of pathogenic weapons. International Journal of Medical Microbiology. 2010; 300(8): 534-543.DOI: 10.1016/j.ijmm.2010.08.005


Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available