Author(s): Netty Suharti, Dachriyanus, Henny Lucida, Fatma Sri Wahyuni, Dira Hefni, Purnawan Pontana Putra


DOI: 10.52711/0974-360X.2022.00825   

Address: Netty Suharti*, Dachriyanus, Henny Lucida, Fatma Sri Wahyuni, Dira Hefni, Purnawan Pontana Putra Faculty of Pharmacy, Universitas Andalas, Padang, West Sumatera, Indonesia 25163.
*Corresponding Author

Published In:   Volume - 15,      Issue - 11,     Year - 2022

Objective: Ginger (Zingiber officinale) has various medicinal properties, including anti-inflammatory, antioxidant, anti-nausea/antiemetic, antibacterial, cytotoxic, and antidiabetic activities. Methods: In silico analysis was performed to predict absorption, distribution, metabolism, and excretion (ADME). Prediction of bond and bond free energy using Autodock Vina, MGL Tools and Biovia Discovery Studio. Gingerol content of Ginger-Ethanolic Extract (MGE) was determined by thin-layer chromatography densitometry and cytotoxic activity by MTT assay. Results : The Gibbs free energy value for 6-Gingerol is -7.686 (kcal/mol), and 6-Shogaol is -7.279 (kcal/mol). Prediction of hydrogen bonding at 6-Gingerol in the amino acids Arg394, Glu353, Ala350. Hydrogen bonding in shogaol on the amino acid Arg394. Statistical analysis showed that the MGE could significantly inhibit breast cancer cells T47D growth (P< 0.05) with IC50 was 16.51 ± 3.67 µg/mL. Conclusion : Based on in silico and in vitro screening Zingiber officinale var. Rubrum has the potential to be developed for anticancer treatment.

Cite this article:
Netty Suharti, Dachriyanus, Henny Lucida, Fatma Sri Wahyuni, Dira Hefni, Purnawan Pontana Putra. In Silico Prediction and In Vitro Cytotoxic Activity of Arbuscular Mycorrhizal Fungi Induced Zingiber officinale Var. Rubrum. Research Journal of Pharmacy and Technology. 2022; 15(11):4913-8. doi: 10.52711/0974-360X.2022.00825

Netty Suharti, Dachriyanus, Henny Lucida, Fatma Sri Wahyuni, Dira Hefni, Purnawan Pontana Putra. In Silico Prediction and In Vitro Cytotoxic Activity of Arbuscular Mycorrhizal Fungi Induced Zingiber officinale Var. Rubrum. Research Journal of Pharmacy and Technology. 2022; 15(11):4913-8. doi: 10.52711/0974-360X.2022.00825   Available on:

1.    Ghlissi Z. Atheymen R. Ali Boujbiha M. Sahnoun Z. Ayedi FM. Zeghal K. et al. Antioxidant and androgenic effects of dietary ginger on reproductive function of male diabetic rats. Int J Food Sci Nutr. 2013;64(8):974–8.
2.    Ravindran PN. Babu KN. Ginger: The genus Zingiber. Ginger: The Genus Zingiber. CRC Press; 2016. 1–576 p.
3.    Baliga MS. Latheef L. Haniadka R. Fazal F. Chacko J. Arora R. Ginger (Zingiber officinale Roscoe) in the Treatment and Prevention of Arthritis. Bioact Food as Interv Arthritis Relat Inflamm Dis. 2013;529–44.
4.    Bray F. Laversanne M. Weiderpass E. Soerjomataram I. The ever-increasing importance of cancer as a leading cause of premature death worldwide. Cancer. 2021;127(16):3029–30.
5.    Srinivasan K. Ginger rhizomes (Zingiber officinale): A spice with multiple health beneficial potentials. PharmaNutrition. 2017;5(1):18–28.
6.    Bode AM. Ma WY. Surh YJ. Dong Z. Inhibition of epidermal growth factor-induced cell transformation and activator protein 1 activation by [6]-gingerol. Cancer Res. 2001;61(3):850–3.
7.    Yamauchi K. Natsume M. Yamaguchi K. Batubara I. Mitsunaga T. Structure-activity relationship for vanilloid compounds from extract of Zingiber officinale var rubrum rhizomes: effect on extracellular melanogenesis inhibitory activity. Med Chem Res. 2019;28(9):1402–12.
8.    Rangasamy P. Hansiya VS. Maheswari PU. Suman T. Geetha N. Phytochemical Analysis and Evaluation of In vitro Antioxidant and Anti-urolithiatic Potential of various fractions of Clitoria ternatea L. Blue Flowered Leaves. Asian J Pharm Anal. 2019;9(2):67.
9.    Rebecca. Kumar R. Swamy VN.  Formulation and in vitro Evaluation of Mouth Dissolving Tablets of Labetalol HCl by Sublimation Method . Asian J Pharm Technol. 2016;6(2):70.
10.    Ling H. Yang H. Tan SH. Chui WK. Chew EH. 6-Shogaol, an active constituent of ginger, inhibits breast cancer cell invasion by reducing matrix metalloproteinase-9 expression via blockade of nuclear factor-κB activation. Br J Pharmacol. 2010;161(8):1763–77.
11.    Singletary K. Ginger: An overview of health benefits. Nutr Today. 2010;45(4):171–83.
12.    Birhane E. Sterck FJ. Fetene M. Bongers F. Kuyper TW. Arbuscular mycorrhizal fungi enhance photosynthesis, water use efficiency, and growth of frankincense seedlings under pulsed water availability conditions. Oecologia. 2012;169(4):895–904.
13.    Chagnon PL. Ecological and evolutionary implications of hyphal anastomosis in arbuscular mycorrhizal fungi. FEMS Microbiol Ecol. 2014;88(3):437–44.
14.    Sindhu TJ. Arathi . K.N. Akhilesh K. Jose A. Binsiya KP. Thomas B. et al. Antiviral screening of Clerodol derivatives as COV 2 main protease inhibitor in Novel Corona Virus Disease: In silico approaches. Asian J Pharm Technol. 2020;10(2):60.
15.    Nirmala D. Durga L. Sudhakar M.  Formulation and In Vitro Characterisation of Capecitabine Gastro Retentive Floating Tablets. Asian J Pharm Technol. 2019;9(3):154.
16.    Waghmare RA.  Synthesis and In Vitro Anti-inflammatory Activity of 5-arylidene-1-[(2 (Methyl suphonyl amino) thiazol-4-yl) methyl]-2-thioxoimidazolidin-4-ones. . Asian J Res Chem. 2017;10(6):739.
17.    Rahmani Z. Douadi A. Rahmani Z. in Vitro Inhibition of a-Amylase Enzyme, Phytochemical Study and Antioxidant Capacity for Cupressus Sempervirens Extracts Growing in Arid Climat. Asian J Res Chem. 2019;12(6):359.
18.    Zeroual S. Daoud I. Gaouaoui R. Ghalem S.  In vitro and Molecular Docking Studies of DPPH with Phoenix dactylifera L. (Deglet-Nour) Crude Fruits extracts and Evaluation of their Antioxidant Activity . Asian J Res Chem. 2020;13(1):52.
19.    Putra PP. Armin F. Florida N. Yusuf GV. Suharti N. Molecular Dynamics, Prediction of Toxicity, and Interaction of the Active Compound Caesalpinia sappan on Essential Lipids Klebsiella pneumoniae. 2021;(November).
20.    Putra PP. Fauzana A. Lucida H. In Silico Analysis of Physical-Chemical Properties, Target Potential, and Toxicology of Pure Compounds from Natural Products. Indones J Pharm Sci Technol. 2020;7(3):107.
21.    Hemalatha K. Selvin J. Girija K. Synthesis, In silico Molecular Docking Study and Anti-bacterial Evaluation of some Novel 4-Anilino Quinazolines. Asian J Pharm Res. 2018;8(3):125.
22.    Rani V. Lal N. In silico drug designing for Jaundice. Res J Sci Technol. 2017;9(1):155.
23.    Zammel N. Saeed M. Bouali N. Elkahoui S. Alam JM. Rebai T. et al. Antioxidant and Anti-Inflammatory Effects of Zingiber officinale roscoe and Allium subhirsutum: In Silico, Biochemical and Histological Study. Foods. 2021;10(6):1383.
24.    Bhavani A. Hemalatha B. Padmalatha K. Formulation development and in vitro Evaluation of sustained release matrix tablets of Cefpodoxime proxetil. Asian J Pharm Technol. 2021;273–8.
25.    Ghasemzadeh A. Jaafar HZE. Rahmat A. Optimization protocol for the extraction of 6-gingerol and 6-shogaol from Zingiber officinale var. rubrum Theilade and improving antioxidant and anticancer activity using response surface methodology. BMC Complement Altern Med. 2015;15(1).
26.    Daina A. Michielin O. Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7(March):1–13.
27.    Halgren TA. Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J Comput Chem. 1996;17(5–6):490–519.<490::AID-JCC1>3.0.CO;2-P
28.    Shiau AK. Barstad D. Loria PM. Cheng L. Kushner PJ. Agard DA. et al. The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell. 1998;95(7):927–37.
29.    Trott O. Olson AJ. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2009;NA-NA.
30.    Eberhardt J. Santos-Martins D. Tillack AF. Forli S. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. J Chem Inf Model. 2021;61(8):3891–8.
31.    Otuokere IE. Amaku FJ. Alisa CO. In Silico Geometry Optimization, Excited-State Properties of (2 E )- N -Hydroxy-3-[3-(Phenylsulfamoyl) Phenyl] prop-2-Enamide (Belinostat) and its Molecular Docking Studies with Ebola Virus Glycoprotein. Asian J Pharm Res. 2015;5(3):131.
32.    Cole JC. Murray CW. Nissink JWM. Taylor RD. Taylor R. Comparing protein-ligand docking programs is difficult. Proteins Struct Funct Genet. 2005;60(3):325–32.
33.    Mukkavilli R. Yang C. Tanwar RS. Saxena R. Gundala SR. Zhang Y. et al. Pharmacokinetic-pharmacodynamic correlations in the development of ginger extract as an anticancer agent. Sci Rep. 2018;8(1).
34.    Chopra N. Kaur D. Chopra G. Nature and Hierarchy of Hydrogen-Bonding Interactions in Binary Complexes of Azoles with Water and Hydrogen Peroxide. ACS Omega. 2018;3(10):12688–702.
35.    Suharty N. Sri Wahyuni F. Dachriyanus. Cytotoxic activity of ethanol extract of arbuscular mycorrhizal fungi induced ginger rhizome on T47D breast cancer cell lines. Pharmacogn J. 2018;10(6):1133–6.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

56th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Recent Articles


Not Available