Author(s):
Pragya Chaturvedi, Vijay Laxmi Saxena, Vishakha Raina, Pooran Singh Solanki, Abhishek Chaturvedi
Email(s):
biochem.abhishek@gmail.com
DOI:
10.52711/0974-360X.2022.00820
Address:
Pragya Chaturvedi1,2,3, Vijay Laxmi Saxena3, Vishakha Raina1, Pooran Singh Solanki2, Abhishek Chaturvedi4*
1School of Biotechnology, KIIT University, Bhubaneshwar
Odisha, India.
2Birla Institute of Scientific Research, Jaipur, Rajasthan, India.
3Bioinformatics Infrastructure Facility Centre
D. G. P. G. College, Kanpur, U.P, India.
4Melaka Manipal Medical College (Manipal Campus), Manipal Academy of Higher Education, Manipal, Karnataka, India-576104.
*Corresponding Author
Published In:
Volume - 15,
Issue - 11,
Year - 2022
ABSTRACT:
Indian culinary spices are used for their medicinal properties since ancient times and play an important role even in today’s traditional medicine systems. The pharmaceutical value of spices is being established through various studies and patents. The antiviral activities of spices are well known. Influenza is a seasonal problem and also a pandemic infection. In the current scenario, there is a need to explore new targets as well as new drugs to combat influenza infection. This study aimed to identify the antiviral activity of spices against influenza targets using the bioinformatics approach. The study predicted the efficiency of curcumin derivatives in targeting multiple influenza targets, which can be further used in anti-influenza treatment.
Cite this article:
Pragya Chaturvedi, Vijay Laxmi Saxena, Vishakha Raina, Pooran Singh Solanki, Abhishek Chaturvedi. Can Spices Cure Flu?: A Multiple targets based Bioinformatics analysis. Research Journal of Pharmacy and Technology. 2022; 15(11):4881-6. doi: 10.52711/0974-360X.2022.00820
Cite(Electronic):
Pragya Chaturvedi, Vijay Laxmi Saxena, Vishakha Raina, Pooran Singh Solanki, Abhishek Chaturvedi. Can Spices Cure Flu?: A Multiple targets based Bioinformatics analysis. Research Journal of Pharmacy and Technology. 2022; 15(11):4881-6. doi: 10.52711/0974-360X.2022.00820 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2022-15-11-5
REFERENCES:
1. Lowen AC. Palese P. Influenza virus transmission: basic science and implications for the use of antiviral drugs during a pandemic. Infect Disord Drug Targets. 2007;7(4):318-28. doi.org/10.2174/187152607783018736
2. Memoli MJ. Morens DM. Taubenberger JK. Pandemic and seasonal influenza: therapeutic challenges. Drug Discov Today. 2008;13(13-14):590-95. doi.org/10.1016/j.drudis.2008.03.024
3. Taubenberger JK. Morens DM. The pathology of influenza virus infections. Annu Rev Pathol. 2008;3:499-522. doi.org/10.1146/annurev.pathmechdis.3.121806.154316
4. Krug RM. Aramini JM. Emerging antiviral targets for influenza A virus. Trends Pharmacol Sci. 2009;30(6):269-77. doi.org/10.1016/j.tips.2009.03.002
5. Boltz DA. Aldridge JR Jr. Webster RG. Govorkova EA. Drugs in development for influenza. Drugs. 2010;70(11):1349-62. doi.org/10.2165/11537960-000000000-00000
6. Ray A. Avian influenza. Research J. Pharmacology and Pharmacodynamics. 2012; 4(3):129-32. doi.org/10.5958 2321-5836
7. Konakanchi S. Darak R. Keerthana S. et al. A Review article on Swine Flu. Asian J. Pharm. Tech. 2018; 8 (3):165-71. doi.org/10.5958/2231-5713.2018.00027.2
8. Durbar US. R.V.G. Antibacterial Effects of South Indian Spices on Oral Microbes. Research J. Pharm. and Tech. 2015; 8(8):1135-36. doi.org/10.5958/0974-360X.2015.00201.2
9. Manju V. Revathi R. Murugesan M. In vitro Antioxidant, Antimicrobial, Anti-inflammatory, Anthelmintic Activity and Phytochemical Analysis of Indian Medicinal Spices. Research J. Pharm. and Tech. 2011; 4(4): 596-99.doi.org/ 10.5958/0974-360X
10. Bhutkar MA. Bhise SB. Spices and Condiments in the management of Diabetes mellitus. Research J. Pharm. and Tech. 2011;4(1): 37-42.doi.org/ 10.5958/0974-360X
11. Choudhari S. Priya V V. Gayathri R. Herbal Remedies for Swine Flu. Research J. Pharm. and Tech. 2016; 9(10):1789-92. doi.org/10.5958/0974-360X.2016.00362.0
12. Zachariah SM. Aleykutty N. Viswanad V. O.A.H. An Overview on Hepatoprotective Activity of Natural Products. Research J. Pharm. and Tech. 2012;5(3):317-21. doi.org/ 10.5958/0974-360X
13. Pandeya SN. Kumar R. Kumar A. Pathak AK. Antidiabetics Review on Natural Products. Research J. Pharm. and Tech.2010;3(2):300-18. doi.org/ 10.5958/0974-360X
14. Sabale P. Potey L. Rahangdale P. Sabale V. Novel Curcumin Derivatives: Targeted for Anti-Inflammatory Activity. Asian J. Research Chem. 2019;12(2):49-54. doi.org/ 10.5958/0974-4150.2019.00011.7
15. Sharma BK. Synthetic and Natural Compounds as Anti-Cancer Agents – A Review. Asian J. Research Chem. 2017;10(5):699-707. doi.org/ 10.5958/0974-4150.2017.00119.5
16. Kamleshiya P. Meshram V. G. Ansari A. H. The in-vitro Bacteriostatic Potential of Some Traditionally used Indian Spices. Asian J. Research Chem. 2012;5(4):492-96. doi.org/ 10.5958/0974-4150
17. Lin LT. Hsu WC. Lin CC. Antiviral natural products and herbal medicines. J Tradit Complement Med. 2014;4(1):24-35. doi.org/10.4103/2225-4110.124335
18. Chattopadhyay I. Biswas K. Bandyopadhyay U. Banerjee R. Turmeric and curcumin: Biological actions and medicinal applications. Current Science. 2004;87(1):44-53.
19. Da-Yuan C. Jui-Hung S. Laurence T. et al. Curcumin inhibits influenza virus infection and haemagglutination activity. Food Chemistry.2010;119(4):1346-51. doi.org/ 0.1016/j.foodchem.2009.09.011
20. Gupta SC. Sung B. Kim JH. et al. Multitargeting by turmeric, the golden spice: From kitchen to clinic. Mol Nutr Food Res. 2013;57(9):1510-28. doi.org/10.1002/mnfr.201100741
21. Moghadamtousi SZ. Kadir HA. Hassandarvish P. et al. A review on antibacterial, antiviral, and antifungal activity of curcumin. Biomed Res Int. 2014; 2014:186864. doi.org/10.1155/2014/186864
22. Yang M. Lee G. Si J. et al. Curcumin Shows Antiviral Properties against Norovirus. Molecules. 2016;21(10):1401. doi.org/10.3390/molecules21101401
23. Ilic DP. Nikolic VD, Nikolic LB. et al. Allicin and related compounds: Biosynthesis, synthesis and pharmacological activity. FactaUniversitatis - Series: Physics, Chemistry and Technology. 2011; 9(1):9-20. doi.org/10.2298/FUPCT1101009I
24. Josling P. Preventing the common cold with a garlic supplement: a double-blind, placebo-controlled survey. Adv Ther. 2001;18(4):189-93. doi.org/10.1007/BF02850113.
25. Ankri S. Mirelman D. Antimicrobial properties of allicin from garlic. Microbes Infect. 1999;1(2):125-9. doi.org/ 10.1016/s1286-4579(99)80003-3.
26. Weber ND. Andersen DO. North JA. et al. In vitro virucidal effects of Allium sativum (garlic) extract and compounds. Planta Med. 1992;58(5):417-23. doi.org/10.1055/s-2006-961504
27. Jesus M. Martins AP. Gallardo E. Silvestre S. Diosgenin: Recent Highlights on Pharmacology and Analytical Methodology. J Anal Methods Chem. 2016; 2016:4156293. doi.org/10.1155/2016/4156293
28. Orhan İE. Özçelik B. Kartal M. Kan Y. Antimicrobial and antiviral effects of essential oils from selected Umbelliferae and Labiatae plants and individual essential oil components. Turk J Biol. 2012; 36:239-46. doi.org/ 10.3906/biy-0912-30
29. Ozçelik B. Kartal M. Orhan I. Cytotoxicity, antiviral and antimicrobial activities of alkaloids, flavonoids, and phenolic acids. Pharm Biol. 2011;49(4):396-402. doi.org/10.3109/13880209.2010.519390
30. Bourne N. Bernstein DI. Stanberry LR. Civamide (cis-capsaicin) for treatment of primary or recurrent experimental genital herpes. Antimicrob Agents Chemother. 1999;43(11):2685-88. doi.org/10.1128/AAC.43.11.2685
31. Khan FA. Mahmood T. Ali M. et al. Pharmacological importance of an ethnobotanical plant: Capsicum annuum L. Nat Prod Res. 2014;28(16):1267-74. doi.org/10.1080/14786419.2014.895723
32. Astani A. Reichling J. Schnitzler P. Comparative study on the antiviral activity of selected monoterpenes derived from essential oils. Phytother Res. 2010;24(5):673-9. doi.org/ 10.1002/ptr.2955
33. Aboubakr HA. Nauertz A. Luong NT. et al. In Vitro Antiviral Activity of Clove and Ginger Aqueous Extracts against Feline Calicivirus, a Surrogate for Human Norovirus. J Food Prot. 2016;79(6):1001-12. doi.org/ 10.4315/0362-028X.JFP-15-593
34. Chang JS. Wang KC. Yeh CF. et al. Fresh ginger (Zingiberofficinale) has anti-viral activity against human respiratory syncytial virus in human respiratory tract cell lines. J Ethnopharmacol. 2013;145(1):146-51. doi.org/ 10.1016/j.jep.2012.10.043
35. Fatima M. Zaidi NU. Amraiz D. Afzal F. In Vitro Antiviral Activity of Cinnamomum cassia and Its Nanoparticles Against H7N3 Influenza A Virus. J Microbiol Biotechnol. 2016;26(1):151-9. doi.org/ 10.4014/jmb.1508.08024
36. Hayashi K. Imanishi N. Kashiwayama Y. et al. Inhibitory effect of cinnamaldehyde, derived from Cinnamomi cortex, on the growth of influenza A/PR/8 virus in vitro and in vivo.Antiviral Res.2007;74(1):1-8.doi.org/ 10.1016/j.antiviral.2007.01.003
37. Chang JS. Wang KC. Yeh CF. et al. Fresh ginger (Zingiberofficinale) has anti-viral activity against human respiratory syncytial virus in human respiratory tract cell lines. J Ethnopharmacol. 2013;145(1):146-51. doi.org/ 10.1016/j.jep.2012.10.043
38. Benencia F. Courrèges M. In vitro and in vivo activity of eugenol on human herpesvirus. Phytother Res. 2000 Nov;14(7):495-500. doi.org/10.1002/1099-1573(200011)14:7<495::aid-ptr650>3.0.co;2-8
39. Kamatou GP. Vermaak I. Viljoen AM. Eugenol--from the remote Maluku Islands to the international market place: a review of a remarkable and versatile molecule. Molecules. 2012;17(6):6953-81. doi.org/ 10.3390/molecules17066953
40. Fu G. Batchelor C. Dumontier M. et al. PubChemRDF: towards the semantic annotation of PubChem compound and substance databases. J Cheminform. 2015;7(1):34. doi.org/10.1186/s13321-015-0084-4
41. Berman HM. Westbrook J. Feng Z. et al. The Protein Data Bank. Nucleic Acids Res. 2000;28(1):235-42. doi.org/ 10.1093/nar/28.1.235.
42. Wang J. Wu Y. Ma C. et al. Structure and inhibition of the drug-resistant S31N mutant of the M2 ion channel of influenza A virus. Proc Natl Acad Sci U S A. 2013;110(4):1315-20. doi.org/ 10.1073/pnas.1216526110
43. Xu X. Zhu X. Dwek RA. et al. Structural characterization of the 1918 influenza virus H1N1 neuraminidase. J Virol. 2008;82(21):10493-501. doi.org/ 10.1128/JVI.00959-08
44. Beylkin D. Kumar G. Zhou W. et al. Protein-Structure Assisted Optimization of 4,5-Dihydroxypyrimidine-6-Carboxamide Inhibitors of Influenza Virus Endonuclease. Sci Rep. 2017;7(1):17139. doi.org/10.1038/s41598-017-17419-6
45. Hale BG. Barclay WS. Randall RE. Russell RJ. Structure of an avian influenza A virus NS1 protein effector domain. Virology. 2008;378(1):1-5. doi.org/ 10.1016/j.virol.2008.05.026
46. Discovery Studio Predictive Science Application | Dassault Systèmes BIOVIA [Internet] Accelrys com 2018 Available from; http;//accelryscom/products/collaborative-science/biovia-discovery-studio.
47. Pawar SS. Rohane SH. Review on Discovery Studio: An important Tool for Molecular Docking. Asian J. Research Chem. 2021;14(1):86-88. doi.org/10.5958/0974-4150.2021.00014.6
48. Diller DJ. Merz KM Jr. High throughput docking for library design and library prioritization. Proteins. 2001;43(2):113-24. doi.org/ 10.1002/1097-0134(20010501)43:2<113::aid-prot1023>3.0.co;2-t.