Author(s): Manpreet Kaur, Navjeet Kaur, Arunachalam Muthuraman, Sachin Kumar

Email(s): sachinsuryan@gmail.com

DOI: 10.52711/0974-360X.2022.00911   

Address: Manpreet Kaur1, Navjeet Kaur2, Arunachalam Muthuraman3, Sachin Kumar4*
1PG Department of Chemistry, Mata Gujri College, Sri Fatehgarh Shib -140406, Punjab, India.
2PG Department of Physics, Mata Gujri College, Sri Fatehgarh Shib -140406, Punjab, India.
3Pharmacology Unit, Faculty of Pharmacy, AIMST University, Kedah Darul Aman, Malaysia.
4Department of Bioinformatics, Janta Vedic College, Baraut- 250601, Uttar Pradesh, India.
*Corresponding Author

Published In:   Volume - 15,      Issue - 12,     Year - 2022


ABSTRACT:
In this study the neuroprotective and antinociceptive effect of a newly synthesized chemical moiety, a thiazolidin derivative, 3-(2-chlorophenyl)-4-imino-5-phenyl-2-(2-methoxyphenyl)-2H,3H,5H-[1,2,5]thiadiazolidin-1-oxide (CIPMTO) in streptozotocin (STZ) induced diabetic neuropathic pain is examined in rat therapeutic model. Multiple behavior and biochemical parameters were assessed on the therapeutic model to understand the role of CIPMTO. In this study, male Wistar rats (220-250 g) were used (7 groups, one group was not given any kind of chemical treatment (normal control). All other 6 groups were given a dose of STZ. Carboxymethylcellulose (CMC) was used as a vehicle for CIPMTO in this study. Out of those 6 groups, 1 group was given no other treatment (negative control), 1 group was given CMC only (Vehicle control), 3 groups were treated with different doses of CIPMTO, and 1 group was treated with pregabalin (positive control). Thereafter multiple behavioral studies and biochemical testing were carried out. CIPMTO is found to attenuate the STZ induced behavioral and biochemical changes in a dose-dependent manner (5, 10, and 15 mg/kg) as compared to that of the pregabalin-treated group. CIPMTO also reduced STZ-induced diabetic NP, which is attributable to its neuroprotective potential via pharmacological activities such as free radical scavenging, anti-lipid peroxidation, and inhibition of intracellular calcium accumulation. The current study shows that CIPMTO has neuroprotective and antinociceptive properties, as well as the ability to reduce neuropathic pain. Though further research and testing could be conducted for establishing the fact.


Cite this article:
Manpreet Kaur, Navjeet Kaur, Arunachalam Muthuraman, Sachin Kumar, The Neuroprotective and Antinociceptive effect of Antidiabetic 3-(2-chlorophenyl)-4-imino-5-phenyl-2-(2-methoxyphenyl)-2H,3H,5H-[1,2,5]thiadiazolidin-1-oxide (CIPMTO) in Streptozotocin-induced diabetic neuropathic pain in rats: primary proof of concept, Research Journal of Pharmacy and Technology2022; 15(12):.5405-4 doi: 10.52711/0974-360X.2022.00911

Cite(Electronic):
Manpreet Kaur, Navjeet Kaur, Arunachalam Muthuraman, Sachin Kumar, The Neuroprotective and Antinociceptive effect of Antidiabetic 3-(2-chlorophenyl)-4-imino-5-phenyl-2-(2-methoxyphenyl)-2H,3H,5H-[1,2,5]thiadiazolidin-1-oxide (CIPMTO) in Streptozotocin-induced diabetic neuropathic pain in rats: primary proof of concept, Research Journal of Pharmacy and Technology2022; 15(12):.5405-4 doi: 10.52711/0974-360X.2022.00911   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2022-15-12-5


REFERENCES:
1.    Treede RD. Jensen TS. Campbell JN. Cruccu G. Dostrovsky JO. et al Neuropathic pain: redefinition and a grading system for clinical and research purposes. Neurology. 2008; 70(18):1630-5. doi:10.1212/01.wnl.0000282763.29778.59
2.    Woolf CJ. Mannion RJ. Neuropathic pain: aetiology, symptoms, mechanisms, and management. Lancet. 1999; 353(9168):1959-64. doi:10.1016/S0140-6736(99)01307-0
3.    Paice JA. Mechanisms and management of neuropathic pain in cancer. The Journal of Supportive Oncology. 2003; 1(2):107-20. PMID:15352654.
4.    Jaggi AS. Jain V. Singh N. Animal models of neuropathic pain. Fundamental and Clinical Pharmacology. 2011; 25(1):1-28. doi:10.1111/j.1472-8206.2009.00801.x
5.    Kiguchi N. Maeda T. Kobayashi Y. Saika F. Kishioka S. Involvement of inflammatory mediators in neuropathic pain caused by vincristine. International Review of Neurobiology. 2009; 85:179-90. doi:10.1016/S0074-7742(09)85014-9
6.    Sioka C. Kyritsis AP. Central and peripheral nervous system toxicity of common chemotherapeutic agents. Cancer Chemotherapy and Pharmacology. 2009; 63(5):761-7. doi:10.1007/s00280-008-0876-6
7.    Kopsky DJ. Liebregts R. Keppel Hesselink JM. Central neuropathic pain in a patient with multiple sclerosis treated successfully with topical amitriptyline. Case Reports in Medicine. 2012; 2012:471835. doi:10.1155/2012/471835
8.    Vranken JH. Hollmann MW. van der Vegt MH. Kruis MR et al Duloxetine in patients with central neuropathic pain caused by spinal cord injury or stroke: a randomized, double-blind, placebo-controlled trial. Pain. 2011; 152(2):267-273. doi:10.1016/j.pain.2010.09.005
9.    Amanova E. Abassova G. Kaishibayeva G. Kovalchuk V. Quality of Life of Patients with Neurological Conditions and Neuropathic Pain. Research Journal of Pharmacy and Technology. 2018; 11(2):504-508. doi:10.5958/0974-360X.2018.00092.6
10.    Akilashree S. Devi BP. A Study on Neuropathic Pain: Causes, Grading System, Mechanism- A Review. Research Journal of Pharmacy and Technology. 2019; 12(7):3125-3132. doi:10.5958/0974-360X.2019.00528.6
11.    Devi SR. Venkatesan B. Effectiveness of foot Reflexology on Diabetic Peripheral Neuropathic Pain among Patients with Diabetes. International Journal of Advances in Nursing Management. 2018; 6(2): 91-92. doi:10.5958/2454-2652.2018.00019.7
12.    Purushothaman P. Faruk SAU. Vetrichelvan T. Formulation development and Evaluation of immediate and sustained release Bilayer Tablets Containing Amitriptyline HCl and Pregabalin for the treatment of Neuropathic Pain. Asian Journal of Pharmacy and Technology. 2017; 7 (3): 127-136. doi:10.5958/2231-5713.2017.00021.6
13.    Pokkula S. Thaakur SR. Krishna VS. Sriram D. Ameliorative effect of Papain on Behavioral and Bio-Chemical Alterations in In-Silico and In-Vivo models of Neuropathic Pain in Rats. Research Journal of Pharmacy and Technology. 2020; 13(8):3807-3812. doi:10.5958/0974-360X.2020.00674.5
14.    Dworkin RH. O'Connor AB. Audette J et al Recommendations for the pharmacological management of neuropathic pain: an overview and literature update. Mayo Clinic Proceedings. 2010; 85(3 Suppl):S3-S14. doi:10.4065/mcp.2009.0649
15.    McNicol ED. Midbari A. Eisenberg E. Opioids for neuropathic pain. Cochrane Database of Systematic Reviews. 2013; 2013(8):CD006146. doi:10.1002/14651858.CD006146.pub2
16.    Chaudhary S. Prashar PK. Gautam A. Sood A. Singh SK et al Rationalized Approach for The Treatment of Neuropathic Pain. Research Journal of Pharmacy and Technology. 2021; 14(5):2887-5. doi:10.52711/0974-360X.2021.00507
17.    Kaur M. Singh B. Synthesis of 4‐Imino‐2H, 3H, 5H‐[1, 2, 5] thiadiazolidin‐1‐oxide through Cycloaddition Reaction of N‐Sulphinylanilines and N‐(α‐Cyano‐α‐aryl)‐methylanilines. Journal of Heterocyclic Chemistry. 2014; 51: 1157-61. doi:10.1002/jhet.1828
18.    Bertamino A. Soprano M. Musella S. Rusciano MR. Sala M. et al Synthesis, in vitro, and in cell studies of a new series of [indoline-3,2'-thiazolidine]-based p53 modulators. Journal of Medicinal Chemistry. 2013; 56(13):5407-21. doi:10.1021/jm400311n
19.    Lupascu FG. Dragostin OM. Foia L. Lupascu D. Profire L. The synthesis and the biological evaluation of new thiazolidin-4-one derivatives containing a xanthine moiety. Molecules. 2013;18(8):9684-703. doi:10.3390/molecules18089684.
20.    Wlodek L. Czubak J. The antioxidative properties of thiazolidine derivatives. Polish Journal of Pharmacology and Pharmacy. 1989; 41: 369-75. PMID: 2634830
21.    Silva AKSE. Torres DOC. Rocha SWS. Gomes FOS, Silva BS et al Effect of new thiazolidine derivatives LPSF/GQ-02 and LPSF/GQ-16 on atherosclerotic lesions in LDL receptor-deficient mice (LDLR(-/-)). Cardiovascular Pathology. 2013; 22(1):81-90. doi:10.1016/j.carpath.2012.05.006
22.    Sharma R. Samadhiya P. Srivastava SD. Srivastava SK. Synthesis of some new thiazolidine derivatives and their biological significance. Latvian Journal of Chemistry. 2011; 50: 296-307. doi:10.2478/v10161-011-0066-4
23.    Nechak R. Bouzroura SA. Benmalek Y. Salhi L. Martini SP et al Synthesis and Antimicrobial Activity Evaluation of Novel 4-Thiazolidinones Containing a Pyrone Moiety. Synthetic Communications. 2015; 45, 262–272. doi:10.1080/00397911.2014.970278
24.    Raghubir R. Verma R. Samuel SS. Raza S. Haq W. Katti SB. Anti-stroke profile of thiazolidin-4-one derivatives in focal cerebral ischemia model in rat. Chemical Biology and Drug Design. 2011; 78(3): 445-53. doi:10.1111/j.1747-0285.2011.01153.x
25.    Yakaiah S. Kumar PSV. Rani PB. Prasad KD. Aparna P. Design, synthesis and biological evaluation of novel pyrazolo-oxothiazolidine derivatives as antiproliferative agents against human lung cancer cell line A549. Bioorganic and Medicinal Chemistry Letters. 2018; 28(4): 630-636. doi:10.1016/j.bmcl.2018.01.027
26.    Rodrigues MDD. Santiago PBGS. Marques KMR. Pereira VRA. Castro MCBA. Cantalice JCLL et al. Selective cytotoxic and genotoxic activities of 5-(2-bromo-5-methoxybenzylidene)-thiazolidine-2,4-dione against NCI-H292 human lung carcinoma cells. Pharmacological Reports. 2018; 70(3): 446-454. doi:10.1016/j.pharep.2017.11.008
27.    Sahiba N. Sethiya A. Soni J. Agarwal DK. Agarwal S. Saturated Five-Membered Thiazolidines and Their Derivatives: From Synthesis to Biological Applications. Topics in Current Chemistry (Cham). 2020; 378(2): 34. doi:10.1007/s41061-020-0298-4
28.    Courteix C. Eschalier A. Lavarenne J. Streptozocin-induced diabetic rats: behavioural evidence for a model of chronic pain. Pain 1993; 53(1): 81-8. doi:10.1016/0304-3959(93)90059-X
29.    Szkudelski T. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiological Research. 2001; 50(6): 537-46. PMID:11829314
30.    Gilron I. Flatters S. Gabapentin and pregabalin for the treatment of neuropathic pain: a review of laboratory and clinical evidence. Pain Research and Management. 2006; 11: 16A-29A. doi:10.1155/2006/651712
31.    Muthuraman A. Singh N. Neuroprotective effect of saponin rich extract of Acorus calamus L. in rat model of chronic constriction injury (CCI) of sciatic nerve-induced neuropathic pain. Journal of Ethnopharmacology. 2012; 142(3): 723-31. doi:10.1016/j.jep.2012.05.049
32.    Vanitha S. Thiagarajan VR. Muthuraman A. Krishnan S. Aruna A. Tharabai R. Pharmacological evaluation of methanolic leaf extract of Swietenia mahagoni on acrylamide-induced neuropathic pain in rats. Toxicology and Industrial Health. 2013; 31(12): 1185-94. doi:10.1177/0748233713491808
33.    Nikalje APG. Shaikh AN. Shaikh SI. Khan FAK. Sangshetti JN. Shinde DB. Microwave assisted synthesis and docking study of N-(2-oxo-2-(4-oxo-2-substituted thiazolidin-3ylamino)ethyl)benzamide derivatives as anticonvulsant agents. Bioorganic and Medicinal Chemistry Letters. 2014; 24(24): 5558-5562. doi:10.1016/j.bmcl.2014.11.016
34.    Eddy NB. Touchberry CF. Lieberman JE. Synthetic analgesics; methadone isomers and derivatives. Journal of Pharmacology and Experimental Therapeutics. 1950; 98(2):121-37. PMID: 15422505
35.    Hargreaves K. Dubner R. Brown F. Flores C. Joris J. A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain. 1988; 32(1): 77-88. doi:10.1016/0304-3959(88)90026-7
36.    Erichsen HK. Blackburn-Munro G. Pharmacological characterisation of the spared nerve injury model of neuropathic pain. Pain. 2002; 98(1-2): 151-61. doi:10.1016/s0304-3959(02)00039-8.
37.    Necker R, Hellon RF. Noxious thermal input from the rat tail: modulation by descending inhibitory influences. Pain. 1978; 4(3): 231-42. doi:10.1016/0304-3959(77)90135-X
38.    D'Amour FE. Smith DL. A method for determining loss of pain sensation. Journal of Pharmacology and Experimental Therapeutics. 1941; 72(1): 74-9.
39.    Takagi H. Inukai T. Nakama M. A modification of Haffner's method for testing analgesics. Japanese Journal of Pharmacology. 1966; 16(3): 287-94. doi:10.1254/jjp.16.287
40.    Lowry OH. Rosebrough NJ. Farr AL. Randall RJ. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry. 1951; 193(1): 265-75. PMID: 14907713
41.    Muthuraman A. Diwan V. Jaggi AS. Singh N. Singh D. Ameliorative effects of Ocimum sanctum in sciatic nerve transection-induced neuropathy in rats. Journal of Ethnopharmacology. 2008; 120(1): 56-62. doi:10.1016/j.jep.2008.07.049
42.    Ohkawa H. Ohishi N. Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry. 1979; 95(2): 351-8. doi:10.1016/0003-2697(79)90738-3
43.    Ellman GL. Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics. 1959; 82(1): 70-7. doi:10.1016/0003-9861(59)90090-6
44.    Green LC. Wagner DA. Glogowski J. Skipper PL. Wishnok JS. Tannenbaum SR. Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Analytical Biochemistry. 1982; 126(1): 131-8. doi:10.1016/0003-2697(82)90118-X
45.    Severinghaus JW. Ferrebee JW. Calcium determination by flame photometry; methods for serum, urine, and other fluids. Journal of Biological Chemistry. 1950; 187(2): 621-30. doi:10.1016/S0021-9258(18)56206-2
46.    Marks J. Carvou NJ. Debnam ES. Srai SK. Unwin RJ. Diabetes increases facilitative glucose uptake and GLUT2 expression at the rat proximal tubule brush border membrane. The Journal of Physiology. 2003; 553(Pt1): 137-45. doi:10.1113/jphysiol.2003.046268
47.    Lukic ML. Stosic-Grujicic S. Shahin A. Effector mechanisms in low-dose streptozotocin-induced diabetes. Developmental Immunology. 1998; 6(1-2):119-128. doi:10.1155/1998/92198
48.    Dudzinska W. Hlynczak AJ. Purine nucleotides and their metabolites in erythrocytes of streptozotocin diabetic rats. Diabetes and Metabolism. 2004; 30(6): 557-67. doi:10.1016/s1262-3636(07)70155-6
49.    Turk J. Corbett JA. Ramanadham S. Bohrer A. McDaniel ML. Biochemical evidence for nitric oxide formation from streptozotocin in isolated pancreatic islets. Biochemical and Biophysical Research Communications. 1993; 197(3): 1458-64. doi: 10.1006/bbrc.1993.2641
50.    Sole SS. Srinivasan BP. Aqueous extract of tamarind seeds selectively increases glucose transporter-2, glucose transporter-4, and islets' intracellular calcium levels and stimulates beta-cell proliferation resulting in improved glucose homeostasis in rats with streptozotocin-induced diabetes mellitus. Nutrition Research. 2012; 32(8): 626-36. doi:10.1016/j.nutres.2012.06.015
51.    Nickerson DS. Rader AJ. Low long-term risk of foot ulcer recurrence after nerve decompression in a diabetes neuropathy cohort. Journal of the American Podiatric Medical Association. 103(5):380-6. doi:10.7547/1030380
52.    Singh R. Kaur N. Kishore L. Gupta GK. Management of diabetic complications: A chemical constituents-based approach. Journal of Ethnopharmacology. 2013, 150(1): 51-70. doi:10.1016/j.jep.2013.08.051
53.    Wu YB. Li HQ. Ren MS. Li WT. Lv XY. Wang L. CHOP/ORP150 Ratio in Endoplasmic Reticulum Stress: A New Mechanism for Diabetic Peripheral Neuropathy. Cellular Physiology and Biochemistry. 2013; 32(2): 367-79. doi:10.1159/000354444
54.    Naziroglu M. Dikici DM. Dursun S. Role of oxidative stress and Ca2+ signaling on molecular pathways of neuropathic pain in diabetes: focus on TRP channels. Neurochemical Research. 2012; 37(10): 2065-75. doi:10.1007/s11064-012-0850-x
55.    Croze ML. Soulage CO. Potential role and therapeutic interests of myo-inositol in metabolic diseases. Biochimie. 2013; 95(10): 1811-27. doi:10.1016/j.biochi.2013.05.011
56.    Misawa S. Sakurai K. Shibuya K. Isose S. Kanai K. Ogino J et al Neuropathic pain is associated with increased nodal persistent Na+ currents in human diabetic neuropathy. Journal of the Peripheral Nervous System. 2009; 14(4):279-84. doi:10.1111/j.1529-8027.2009.00239.x
57.    Oates PJ. Polyol pathway and diabetic peripheral neuropathy. International Review of Neurobiology. 2002; 50: 325-92. doi:10.1016/S0074-7742(02)50082-9
58.    Dam PSV. Cotter MA. Bravenboer B. Cameron NE. Pathogenesis of diabetic neuropathy: Focus on neurovascular mechanisms. European Journal of Pharmacology. 2013; 719(1-3): 180-86. doi:10.1016/j.ejphar.2013.07.017

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available