Author(s): Charanjit Kaur, Chandermohan

Email(s): charanjitkaur13@gmail.com , chandermohan@rayatbahra.com

DOI: 10.52711/0974-360X.2022.00384   

Address: Charanjit Kaur1,2, Chandermohan3*
1IKG Punjab Technical University, Kapurthala (Punjab) - 144603, India.
2Department of Pharmaceutical Chemistry, Khalsa College of Pharmacy, Amritsar (Punjab) - 143001, India.
3Rayat Bahra Institute of Pharmacy, Hoshiarpur, (Punjab) - 146001, India.
*Corresponding Author

Published In:   Volume - 15,      Issue - 5,     Year - 2022


ABSTRACT:
Habenaria pectinata is a terrestrial plant from the Orchid family, found in the mountain forests of India, Yunnan, and Nepal. The antimicrobial potential of the genus Habenaria has been reported in the literature. This study aimed to evaluate the antimicrobial potential of methanolic extract, and its fractions; and to isolate an antimicrobial compound from H. pectinata. Antimicrobial potential of tubers of Habenaria pectinata was assessed by using methanol extract against Bacillus cereus, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Aspergillus flavus, Candida albicans, and Aspergillus niger using agar well diffusion method. Column chromatography was used for the isolation of compounds from the most active ethyl acetate fraction of methanolic extract. Structure elucidation was done using 1D and 2D NMR spectroscopy and mass spectrometry. The methanolic extract and ethyl acetate fraction expressed a significant zone of inhibition. The compound isolated from ethyl acetate fraction was identified as 2-(2-hydroxy-6-methoxyphenethyl)-5-methoxybenzene-1,3-diol(Combretastatin B4/Stillbene) using spectroscopic data. Minimum inhibitory concentration (MIC value) of the isolated compound against S. aureus and A. niger was found to be 40 and 120µg/ml, respectively followed by E. coli (125µg/ml) and P. aeruginosa (150µg/ml) which makes it a potent antimicrobial molecule. This is the first report of the isolation of 2-(2-hydroxy-6-methoxyphenethyl)-5-methoxybenzene-1,3-diol from H.pectinata and its antimicrobial potential. This study represents the potential of alcoholic extract of this plant as a probable source of antimicrobials for future use.


Cite this article:
Charanjit Kaur, Chandermohan. Evaluation of the Antimicrobial potential of Methanolic extract and a dihydrostilbene isolated from tubers of Habenaria pectinata. Research Journal of Pharmacy and Technology. 2022; 15(5):2307-2. doi: 10.52711/0974-360X.2022.00384

Cite(Electronic):
Charanjit Kaur, Chandermohan. Evaluation of the Antimicrobial potential of Methanolic extract and a dihydrostilbene isolated from tubers of Habenaria pectinata. Research Journal of Pharmacy and Technology. 2022; 15(5):2307-2. doi: 10.52711/0974-360X.2022.00384   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2022-15-5-66


REFERENCES:
1.    Leggadrio RJ.  Emerging drug-resistant bacteria: the wake-up call has come. Stn Med J 1995; 88: 884-885.
2.    Cowan MM.  Plant Products as Antimicrobial Agents. Clin Microbiol Rev 1999; 12: 564-582.
3.    Betania BC, Alviclér M, Adriano MCP, Ezequias PS, Tânia MAA, Carlos LZ. Chemical Constituents of Habenaria petalodes Lindl. Orchidaceae. J Braz Chem Soc 2008; 19: 1098-1104.
4.    Rawat S, Jugran AK, Bahukhandi A, et al. Anti-oxidant and anti-microbial properties of some ethno-therapeutically important medicinal plants of Indian Himalayan Region. 3 Biotech 2016; 6: 154.
5.    Roy AR, Patel RS, Patel VV, Yadav DS. Medicinal Orchids of Meghalaya. J Orchid Soc Ind. 2007; 21: 15-27.
6.    Jalal JS, Kumar P, Pangtey YPS. Ethnomedicinal Orchids of Uttarakhand. Ethnobot Leaflets. 2008; 12: 1227-1230
7.    Chen X, Gale SW, Cribb PJ, et al. Flora of China 2009; 25: 201-205. Science Press, Beijing, China, and Missouri Botanical Garden Press, St. Louis, USA.
8.    Nasir E,  Ali SI. Flora of West Pakistan. Pakistan Agricultural Research Council, 1972.
9.    Singh A, Duggal S. Medicinal orchids-an overview. Ethnobotanical leaflets 2009; 3: 3.
10.    Kaur C, Sachdeva R, Singh G, et al. Evaluation of the Antiarthritic Potential of Habenaria pectinata Using In Vitro Models and Identification of Piperine Using High-Performance Liquid Chromatography. Applied In Vitro Toxicology. 2020; 6: 3-10.http://doi.org/10.1089/aivt.2019.0012.
11.    Kaur C, Kumar R, Singh G, Mohan C. Antioxidative and free radical scavenging potentials of Habenaria Pectinata. Asian J Pharm Clin Res. 2020; 13(3): 68-1.
12.    Dahija S, Cakar J, Vidic D, Maksimović M, Parić A. Total phenolic and flavonoid contents, antioxidant and antimicrobial activities of Alnus glutinosa (L.) Gaertn., Alnus incana (L.) Moench and Alnus viridis (Chaix) DC. extracts. Nat Prod Res. 2014; 28(24): 2317-20. doi: 10.1080/14786419.2014.931390.
13.    Sandeep DS, Nayak P, Jose J, Relita MR, Sumana DR. Formulation and Evaluation of Antibacterial Herbal gels of Murraya koenigii Leaves Extract. Research J Pharm and Tech. 2017; 10(6): 1798-1801. doi: 10.5958/0974-360X.2017.00317.1
14.    Hemalatha M, Arirudran B, Thenmozhi A, Mahadeva Rao US. Antimicrobial Effect of Separate Extract of Acetone, Ethyl Acetate, Methanol and Aqueous from Leaf of Milkweed (Calotropis gigantea L.). Asian J. Pharm. Res. 2011; 1(4):102-107.
15.    Kumar SS, Melchias G, Ravikumar P, Chandrasekar R, Kumaravel P. Bioinspired synthesis of silver nanoparticles using Euphorbia hirta leaf extracts and their antibacterial activity. Asian J. Pharm. Res. 2014;  4(1): 39-43.
16.    Shrivastava K, Sahu S, Mishra SK, De K. In vitro Antimicrobial Activity and Phytochemical Screening of Syzygium aromaticum. Asian J. Res. Pharm. Sci. 2014; 4(1): 12-15.
17.    SindhuTJ, Arathi KN, Devi A, Aswathi TA, Noushida M, Midhun M, Kuttiyil SS. Synthesis, Molecular Docking and Antibacterial Studies of Novel Azole derivatives as Enoyl ACP Reductase Inhibitor in Escherichia coli. Asian J. Res. Pharm. Sci. 2019; 9(3): 174-180.
18.    Rao N, Mittal S, Sudhanshu, Menghani E. Assessment of Phytochemical Screening, Antioxidant and Antibacterial Potential of the Methanolic Extract of Ricinus communis L. Asian J. Pharm. Tech. 2013; 3(1): 20-25.
19.    Khan MY, Gupta P, Singh VK, Yadav S, Verma VK. Cymbopogon Citrates Oil Showing Antimicrobial Activity against Microbes of Environmental, Clinical and Food Origin. Asian J. Pharm. Tech. 2013; 3(2): 67-72.
20.    Tiwari P. Antimicrobial Activity of Draksharishta Prepared by Traditional and Modern Methods. Asian J. Pharm. Tech. 2014; 4(3):131-133.
21.    Merlin NJ, Parthasarathy V, Manavalan R, Devi P, Meera R. Phyto-Physico chemical evaluation, Anti-Inflammatory and Antimicrobial activities of Aerial parts of Gmelina asiatica. Asian J. Research Chem. 2009; 2(1): 76-82.
22.    Killedar SG, Kope KI, Sangle SB, Tamboli MS. Standardization and Antimicrobial Activity of Watery Fluid at Floral Base of Spathodea campanulata (Pal). Asian J. Pharm. Ana. 2011; 1(1): 19-21.
23.    Mohite SA, Shah RR, Patel NR. Antimicrobial Activity of Leaves extracts of Jatropha curcas. Asian J. Pharm. Res. 2018; 8(1): 17-20.
24.    Eloff JN. A sensitive and quick method to determine the minimal inhibitory concentration of plant extracts for bacteria. Planta Medica 1998a; 64: 711-713. Eloff JN. Which extractant should be used for the screening and isolation of antimicrobial component from plants? J Ethnopharm 1998b; 60: 1-8.
25.    Garcia BL, Summers BJ, Ramyar KX, et al. A structurally dynamic N-terminal helix is a key functional determinant in staphylococcal complement inhibitor (SCIN) proteins. J Biol Chem 2013; 288: 2870-81. doi: 10.1074/jbc.M112.426858.
26.    Schröder SP, de Boer C, McGregor NGS, et al. Dynamic and Functional Profiling of Xylan-Degrading Enzymes in Aspergillus Secretomes Using Activity-Based Probes. ACS Cent Sci 2019; 5: 1067-1078. doi: 10.1021/acscentsci.9b00221.
27.    Letcher RM, Nhamo LRM, Gumiro IT. Chemical constituents from the Combretaceae. Part II. Substituted phenanthrenes and 9,10 dihydrophenanthrenes and a substituted bibenzyl from the heartwood of Combretum molle. J Chem Soc Perkins Trans 1972; 1: 1179-1191.
28.    Katerere DRP. Phytochemical and Pharmacological Studies of Species of African Combretaceae. Ph.D Thesis, University of Strathclyde, UK; 2001.
29.    Majumder PL. Bibenzyl derivatives from the orchid Dendrobium amoenum. Phytochem 1999; 52: 1365-1369.
30.    Eloff JN, Famakin JO, Katerere DRP. Isolation of an antibacterial stilbene from Combretum woodii (Combretaceae) leaves. Afr J Biotechnol 2005; 4: 1167-1171.
31.    Venkateswarlu S, Raju MS, Subbaraju GV. Biosci. Biotechnol. Biochem 2002; 66: 2236-2238.
32.    Zhang X, Xu JK, Wang J. Bioactive bibenzyl derivatives and fluorenones from Dendrobium nobile. J Nat Prod 2007; 70: 24-28.
33.    Takagi S, Yamaki M, Inoue K. Antimicrobial agents from Bletilla Striata. Phytochemistry 1983; 22(4): 101l-1015.
34.    Polya G. Biochemical Targets of Plant Bioactive Compounds: A Pharmacological Reference Guide to Sites of Action and Biological Effects. Edition revised. Publisher CRC Press. 2003. ISBN 1134395337, 9781134395330.
35.    Yan X, Xie G, Zhou J, Milne GWA. Traditional Chinese Medicines: Molecular Structures, Natural Sources and Applications: Molecular Structures, Natural Sources and Applications. Edition reprint, Publisher Routledge. 2018. ISBN:1351758098, 9781351758093.
36.    Daniel M. Handbook of Phytoalexin Metabolism and Action, Publisher Routledge. 2017. ISBN 1351442155, 9781351442152.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available