Author(s):
K. Tirumala Devi, B. S. Venkateswarlu, D. Umamaheswari, G. R. Vijay Sankar, N. Lakshmi Prasanthi
Email(s):
ktirumaladevi89@gmail.com
DOI:
10.52711/0974-360X.2022.00441
Address:
K. Tirumala Devi1*, B. S. Venkateswarlu², D. Umamaheswari³, G. R. Vijay Sankar2, N. Lakshmi Prasanthi4
1Department of Pharmaceutics, M.A.M College of Pharmacy, Kesanupalli, Guntur, Andhra Pradesh, India.
2Department of Pharmaceutics, Vinayaka Missions College of Pharmacy, Salem, Tamilnadu.
3Department of Pharmaceutical Chemistry, Vinayaka Missions College of Pharmacy, Salem, Tamilnadu.
4Department of Pharmaceutical Sciences, Vignan’s Foundation for Science, Technology and Research, Vadlamudi, Guntur, Andhra Pradesh, India.
*Corresponding Author
Published In:
Volume - 15,
Issue - 6,
Year - 2022
ABSTRACT:
This research describes the preparation of ornidazole (ORZ) polymeric nanoparticles by using chitosan as polymer for colon-specific delivery. The polymeric nanoparticles were prepared by the ionic gelation method. The nanoparticles were evaluated for their in vitro drug release properties. Scanning electron microscopy was used for morphology observation. The nanoparticles exhibited mucoadhesive properties, which diminished with increasing drug content. The nanoparticles with a particle size range between 180 and 280?nm exhibited excellent mucoadhesive properties. The results shown that the formulated nanoparticles have succeeded in controlling the release of (ORZ) over a 14-hr period. In conclusion, the release of ORZ was found to be dependent upon the composition of the nanoparticles, the ratio of the components and possible particle size, as well as bioadhesive ability.
Cite this article:
K. Tirumala Devi, B. S. Venkateswarlu, D. Umamaheswari, G. R. Vijay Sankar, N. Lakshmi Prasanthi. Design and Development of Ornidazole Loaded Polymeric Nanoparticles. Research Journal of Pharmacy and Technology. 2022; 15(6):2639-4. doi: 10.52711/0974-360X.2022.00441
Cite(Electronic):
K. Tirumala Devi, B. S. Venkateswarlu, D. Umamaheswari, G. R. Vijay Sankar, N. Lakshmi Prasanthi. Design and Development of Ornidazole Loaded Polymeric Nanoparticles. Research Journal of Pharmacy and Technology. 2022; 15(6):2639-4. doi: 10.52711/0974-360X.2022.00441 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2022-15-6-45
REFERENCES:
1. Meltem C. Alptug A. Yucel K. Formulation and In vitro Characterization of Eudragit® L100 and Eudragit®L100- PLGA nanoparticles containing diclofenac sodium. AAPS Pharm SciTech. 2010;11(3):1250 - 1256. doi: 10.1208/s12249-010-9489-6.
2. Qi L. Xu Z. Jiang X. Hu C. Zou X. Preparation and antibacterial activity of chitosan nanoparticles, Carbohydrate research. 2004; 339(16): pp. 2693 -2700. doi: 10.1016/j.carres.2004.09.007.
3. Selvakumar S. Ravichandran S. Matsyagiri L. Development and Validation of analytical method for Simultaneous estimation of Ornidazole and Cefixime trihydrate tablet dosage forms by UV spectroscopy. Asian J. Pharm. Ana. 2016; 6(4): 246-252. doi: NA
4. Remi SL. Joyamma V. Jayakumaran Nair A. Vishnu S. Application of an Eco-friendly, Cost-effective Hydrotropic solution as mobile phase for the estimation and validation of Ornidazole in bulk and Pharmaceutical Formulation by RP-HPLC. Asian J. Res. Pharm. Sci. 2021; 11(1):15-21. doi: 10.5958/2231-5659.2021.00003.5
5. Minami K. Hirayama F. Uekama K. Colon-specific drug delivery based on a cyclodextrin prodrug: release behavior of biphenylyl acetic acid from its cyclodextrin conjugates in rat intestinal tracts after oral administration. J Pharm Sci. (1998); 87(6): 715 - 720. doi: 10.1021/js9704339.
6. Laith Hamza S. Preparation and Evaluation of Nystatin-Loaded Solid-Lipid-Nanoparticles for Topical Delivery. Asian J. Pharm. Res. 2014; 4(1): 44-51. doi: NA
7. Saudagar RB. Kanchan T. Mandlik A. A Review on Gold Nanoparticles. Asian J. Pharm. Res. 2016; 6(1): 45-48. doi: 10.5958/2231-5691.2016.00008.3
8. Pragati A. Bachhav R. Shroff A. Shirkhedkar. Silver Nanoparticles: A Comprehensive Review on Mechanism, Synthesis and Biomedical Applications. Asian J. Pharm. Res. 2020; 10(3):202-212. doi: 10.5958/2231-5691.2020.00035.0
9. Gupta Durgesh Kumari. Goswami Raksha. Kumawat Deepak. Gupta Anjana. Chandy Steffy Mary. A Review on Chitosan Nanoparticle as a Drug delivery system. Asian J. Pharm. Res. 2020; 10(4):299-306. doi: 10.5958/2231-5691.2020.00051.9
10. Vignesh Balaji E. Tamil Selvan A. Nanopharmacology: A Novel Approach in Therapeutics. Asian J. Res. Pharm. Sci. 2019; 9(1):09-16. doi: 10.5958/2231-5659.2019.00003.1
11. Madhu Latha VS. Naga Ravikiran T. Suresh Kumar JN. Formulation, Optimization and Evaluation of Glibenclamide Transdermal Patches by using chitosan Polymer. Asian J. Pharm. Tech. 2019; 9(1):01-07. doi: 10.5958/2231-5713.2019.00001.1
12. Omar S. Aldosari B. Refai H. Gohary O. Colon-specific drug delivery for mebeverine hydrochloride. J Drug Target. 2007; 15(10): pp. 691 - 700. doi: 10.1080/10611860701603281.
13. Pack DW. Hoffman AS. Pun S. Stayton PS. Design and development of polymers for gene delivery. Nat Rev Drug Discov. 2005; 4(7): 581-593. doi: 10.1038/nrd1775.
14. Mishra B. Jayanth P. Mishra DN. Sankar C. Development of Guargum Alginate based microcapsule of Metronidazole for delivery to colon. Acta Pharmaceutica Turcica. 2004; 46: 121-130. doi: NA
15. Mongia P. Khatik R. Raj R. Jain N. Pathak AK. pH-Sensitive Eudragit S-100 coated chitosan nanoparticles of 5-amino salicylic acid for colon delivery, Journal of Biomaterials and Tissue Engineering. 2014; 4(9): 738 - 743. doi:10.1166/jbt.2014.1229
16. Rubinstein. A. Approaches and opportunities in colon-specific drug delivery, Critical Reviews™ in Therapeutic Drug Carrier Systems, 1995; 12(2-3): 101 - 149. doi: 10.1615/critrevtherdrugcarriersyst.v12.i2-3.10.
17. Rudzinski WE. Palacios A. Ahmed A. Lane M. Aminabhavi, TM. Targeted delivery of small interfering RNA to colon cancer cells using chitosan and PEGylated chitosan nanoparticles. Carbohydr Polym. 2016; 20(147): 323 - 332. doi: 10.1016/j.carbpol.2016.04.041.
18. Jeba Jeevitha RS. Bella GR. Avila S. Thanga Booshan. Preparation and Characterization of Micro Crystalline Cellulose Fiber Reinforced Chitosan based Polymer Composites. Asian J. Research Chem. 2015; 8(7): 453-458. doi: 10.5958/0974-4150.2015.00074.7
19. Moulari B. Béduneau A. Pellequer Y and Lamprecht A. Lectin decorated nanoparticles enhance binding to the inflamed tissue in experimental colitis. J Control Release. 2014; 188: 9 - 17. doi: 10.1016/j.jconrel.2014.05.046.
20. Shahbazi MA. and Santosh HA. Improving oral absorption via drug loaded nanopartlcles: Absorption mechanism. Intestinal models and Rational Fabrication, Current drug Metabolism. 2013; 14(1): 28 - 56. doi:10.2174/138920013804545133
21. Sharma M. Malik R. Verma A. Dwivedi P. Banoth GS. Pandey N. et al Folic acid conjugated guargum nanoparticles for targeting methotrexate to colon cancer. J. Biomed.Nanotechnol. 2013; 9(1): 96 - 106. doi: 10.1166/jbn.2013.1474.
22. Tally FP. Sutter VL and Flnegold SM. Treatment of anaerobic infections with metronidazole. Antimicrob. Agents Chemother. 1975; 61(7): 672 -675. doi: 10.1086/647939
23. Tang BC. Dawson M. Lai SK. Wang YY. Suk JS. Yang M. Zeitlin P. et al Biodegradable polymer nanoparticles that rapidly penetrate the human mucus barrier. Proc, Nat. Acad.Sci, (2009);106(46): 19268 - 19273. doi: 10.1073/pnas 0905998106.
24. Thakral NK. Ray AR. Bar-Shalom D. Eriksson AH. Majumdar DK. The quest for targeted delivery in colon cancer: mucoadhesive valdecoxib nano particles, Int J. Nanomedicine. 2011; 6: pp.1057 - 1068. doi: 10.2147/IJN.S19561
25. Spada G. Gavini E. Cossu M. Rassu G. Giunchedi P. Solid lipid nanoparticles with and without hydroxypropyl-β-cyclodextrin: a comparative study of nanoparticles designed for colonic drug delivery. Nanotechnology, 2012, 23(9):95-101. doi: 10.1088/0957-4484/23/9/095101.