Author(s):
Mahfur, Erna Prawita Setyowati, Subagus Wahyuono, Indah Purwantini
Email(s):
erna_prawita @ ugm.ac.id
DOI:
10.52711/0974-360X.2022.00477
Address:
Mahfur1,2, Erna Prawita Setyowati3*, Subagus Wahyuono3, Indah Purwantini3
1Doctoral Program in Pharmaceutical Science, Faculty of Pharmacy, Gadjah Mada University, Yogyakarta 55281, Indonesia.
2Department of Pharmaceutical Biology, Faculty of Pharmacy, Pekalongan University, Pekalongan, Indonesia.
3Department of Pharmaceutical Biology, Faculty of Pharmacy, Gadjah Mada University, Yogyakarta 55281, Indonesia.
*Corresponding Author
Published In:
Volume - 15,
Issue - 6,
Year - 2022
ABSTRACT:
Sponge is one of the marine organisms that contribute greatly to the diversity of compounds in marine. Hyrtios reticulatus, a marine sponge of genus Hyrtios, is a structurally rich source of various metabolites. Hyrtios reticulatus can be found in various places. So far several reports have mentioned that this species has not been widely published except those originating from Indonesia especially Makassar island, Papua New Guinea, Vanuatu, and collections from the National Cancer Institute in London. Every sample taken from different places has different secondary metabolites due to the different physical and chemical conditions found in the oceans, causing the sample to have a diverse bioactivity. The secondary metabolites obtained from sponge Hyrtios reticulatus obtained from sponges from different places are shown in the articles published so far contain 19 compounds, they are obtained from sponge with different places. It is 1,6-dihydroxy-1,2,3,4-tetrahydro-ß-carbolin (1), serotonin (2), 6-hydroxy-1-methyl-1,2,3 , 4-tetrahydro- ß -carboline (3), 6-hydroxy-3,4- dihydro-1-oxo-ß-carboline (4), hyrtiocarboline (5), sacrotride A (6), 1-O-hexadecyl-sn-glycero-3-phosphocholine (7), heteronemin (8), puupehenone (9), 3-carboxy-6-hydroxy-ß- carboline (10), hyrtioreticulins A–E (11-15), hyrtioerectine B (16), hyrtioreticulin F (17) reticulatins A (18), and B (19). This review emphasizes the phytochemicals of the secondary metabolites and bioactivity of the sponge Hyrtios reticulatus. This article highlights how to obtain active compounds and bioactivity from these compounds from sponge Hyrtios reticuatus.
Cite this article:
Mahfur, Erna Prawita Setyowati, Subagus Wahyuono, Indah Purwantini. Sponge Hyrtios reticulatus: Phytochemicals and Bioactivities. Research Journal of Pharmacy and Technology. 2022; 15(6):2855-1. doi: 10.52711/0974-360X.2022.00477
Cite(Electronic):
Mahfur, Erna Prawita Setyowati, Subagus Wahyuono, Indah Purwantini. Sponge Hyrtios reticulatus: Phytochemicals and Bioactivities. Research Journal of Pharmacy and Technology. 2022; 15(6):2855-1. doi: 10.52711/0974-360X.2022.00477 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2022-15-6-81
REFERENCES:
1. Mayer AMS, Rodr AD, Taglialatela-scafati O, Fusetani N. Marine Pharmacology in 2014–2015: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis, Antiviral, and Anthelmintic Activities; Affecting the Immune and Nervous Systems, and Other Miscellaneous. Marine Drugs. 2020; 18(1): 5-66. Doi: 10.3390/md18010005
2. Jha RK, and Zi-rong X. Quality Not Quantity: The Role of Marine Natural Products in Drug Discovery and Reverse Chemical Proteomics. Marine Drugs. 2004;3(2): 36–63. Doi: 10.3390/md302036
3. Fotie J. Marine Natural Products As Strategic Prototypes in the Development of a New Generation of Antimalarial Agents. 2019.
4. Pallela R and Ehrlich H. Marine Sponges: Chemicobiological and Biomedical Applications: First Edition. Springer. Berlin. 2016.
5. Forges BRD and Payri C E. Compendium of Marine Species from New Caledonia : Second Edition. 2007.
6. Mehbub MF, Perkins MV., Zhang W, Franco CMM. New Marine Natural Products from Sponges (Porifera) of the Order Dictyoceratida (2001 To 2012); A Promising Source for Drug Discovery, Exploration and Future Prospects. Biotechnology Advances. 2016; 34(5): 473–491. doi: 10.1016/j.biotechadv.2015.12.008
7. Schumacher M, Kelkel M, Dicato M, Diederich M. A Survey of Marine Natural Compounds and their Derivatives with Anti-Cancer Activity Reported in 2010. Molecules. 2011; 16 (7): 5629–5646. Doi: 10.3390/molecules16075629
8. Mani L, Jullian V, Mourkazel B, Valentin A, Dubois J, Cresteil T, Folcher E, Hooper JNA, Erpenbeck D, Aalbersberg W, and Debitus C. New Antiplasmodial Bromotyrosine Derivatives from Suberea Ianthelliformis Lendenfeld. Chemistry and Biodiversity. 2012; 9(8): 1436–1451. doi: 10.1002/cbdv.201100309
9. El-Ezz RA, Ibrahim A, Habib E, Wahba A, Kamel H, Afifi M, Hassanean H, and Ahmed S. Review of Natural Products from Marine Organisms in the Red Sea. International journal of pharmaceutical sciences and research. 2017; 8(3): 940–974. Doi: 10.13040/IJPSR.0975-8232.8(3).940-74
10. Cheng MM, Tang XL, Sun YT, Song DY, Cheng YJ, Liu H, Li PL, and Li GQ. Biological and Chemical Diversity of Marine Sponge-Derived Microorganisms over the Last Two Decades from 1998 to 2017. Molecules. 2020;25(4): 853-924. doi: 10.3390/molecules25040853
11. Blunt JW, Copp BR, Keyzers RA, Munro MHG, Prinsep MR. Marine Natural Products. Natural Product Reports. 2016;33(3):382-431. doi: 10.1039/c5np00156k
12. Yang F, Gan J, Liu X, Lin H. Scalarane Sesterterpenes from the Paracel Islands Marine Sponge Hyrtios sp. Natural Product Communications. 2014; 9(6): 763–764. Doi: 10.1177/1934578X1400900608
13. Johnson TA, Sohn J, Inman WD, Estee SA, Loveridge ST, Vervoort HC, Tenney K, Liu J, Ang KKH, Ratnam J, Bray WM, Gassner NC, Shen YY, Lokey RS, McKerrow JH, Boundy MK, Nukanto A, Kanti A, Julistiono H, Kardono LBS, Bjeldanes LF, and Crews P. Natural Product Libraries to Accelerate the High-Throughput Discovery of Therapeutic Leads. Journal of Natural Product. 2011; 74(12): 2545–2555. doi: 10.1021/np200673b
14. Voogd NJD. An Assessment Of Sponge Mariculture Potential in the Spermonde Archipelago, Indonesia. Journal of the Marine Biological Association of the United Kingdom. 2007;87(6) : 1777–1784. Doi: 10.1017/S0025315407057335
15. Anjum K, Abbas SQ, Shah SAA, Akhter N, Batool S, Hassan SSU. Marine Sponges as a Drug Treasure. Biomolecules and Therapeutic. 2016;24(4):347-362. doi: 10.4062/biomolther.2016.067
16. Setyowati EP, Jenie UA, Sudarsono, Kardono LBS, Rahmat R. Theonellapeptolide Id: Structure Identification of Cytotoxic Constituent from Kaliapsis sp. Sponge (Bowerbank) Collected from West Bali Sea Indonesia. Journal of Biological Sciences. 2009; 9(1): 29–36. Doi: 10.3923/jbs.2009.29.36
17. Setyowati EP, Pratiwi SUT, Purwantiningsih, Purwantini I. In-vitro cytotoxicity and apoptosis mechanism of ethyl acetate extract from Trichoderma reesei strain TV221 associated with marine sponge: Stylissa flabelliformis. J Appl Pharm Sci. 2018;8(9):151-157. doi:10.7324/JAPS.2018.8921
18. Fattorusso E, Taglialatela-Scafati O. Antimalarial lead compounds from marine organisms. Stud Nat Prod Chem. 2005;32(PART L):169-207. doi:10.1016/S1572-5995(05)80056-0
19. Suman T, Kaleeswaran B, Immanuel T, Dam Roy S, Krishnan P. Antibacterial activity of Pseudoceratina purpurea - A marine sponge from Andaman. Res J Pharm Technol. 2013;6(5):544-549.
20. Sharmalkumar M, Narasingam A, Anand D, et al. In-vitro study on antimicrobial and anticancer activities of marine sponge Clathria frondifera associated bacteria. Res J Pharm Technol. 2020;13:3753. doi:10.5958/0974-360X.2020.00664.2
21. Fristiyohadi A, Wahyuni W, Kalimin WO, Permana LO, Saripuddin S, Sahidin I. Anti-Inflammatory Activity of Marine Sponge Aaptos sp. to the Plasma Interleukin-1β Level in Wistar Male Rats. Pharmacol Clin Pharm Res. 2019;4(2):35. doi:10.15416/pcpr.v4i2.24269
22. Sudayasa I, Fristiohady A, Wahyuni, et al. Effect of Extract Marine Sponge Xestospongia sp. and Aaptos sp. on the Plasma IL-1$β$ Level in Inflammatory Model Rats: Time Dependent. Res J Pharm Technol. 2020;13:5455-5458.
23. Mutalib L. Comparative physicochemical, phytochemical and biological study of botanically related species from Brassicaceae family grown in Kurdistan Region, Iraq. Asian J Res Pharm Sci. 2015;5:168. doi:10.5958/2231-5659.2015.00025.9
24. Kumar GS, Noorjahan, Reddy G, Mujahid SK, Ashwini T, Chary V. Extraction, Phytochemical Studies and In_Vitro Screening of the Leaves and Flowers of Crossandra infundibuliformis against Mycobacterium tuberculosis. Asian J Res Pharm Sci. 2018;8:247-252.
25. Santhosha D. Pharmacognostic Study, Phytochemical Screening and Neuroprotective Activity of Methanolic extract of Gynandropsis gynandra against Transient Global Ischemia induced brain damage in rats. Asian J Res Pharm Sci. 2019;9:156-162.
26. Shady NH, El-hossary EM, Fouad MA, Gulder TAM, Kamel MS, Abdelmohsen UR. Bioactive Natural Products of Marine Sponges from the Genus Hyrtios. Molecules. 2017; 22(5): 781-802. Doi: 10.3390/molecules22050781
27. Salmoun M and Devijver C. 5-Hydroxytryptamine-Derived Alkaloids from Two Marine Sponges of the Genus Hyrtios. Journal of Natural Products. 2002; 65(8): 1173–1176. Doi: 10.1021/np020009+
28. Inman WD, Bray WM, Gassner NC, Lokey RS, Tenney K, Shen YY, Tendyke K, Suh T, and Crews P. A β-Carboline Alkaloid from the Papua New Guinea Marine Sponge Hyrtios reticulatus. Journal of Natural Products. 2010; 73(2): 255–257. doi: 10.1021/np9005426
29. Ledroit V, Debitus C, Ausseil F, Raux R, Menou JL, Hill BT. Heteronemin as a Protein Farnesyl Transferase Inhibitor. Pharmaceutical Biology. 2004; 42(6): 454–456. Doi: 10.1080/13880200490886120
30. Mckee TC et al. Inhibition of Hypoxia Inducible Factor‑2 Transcription: Isolation of Active Modulators from Marine Sponges. Journal of Natural Products. 2012; 75(9): 1632–1636. Doi: 10.1021/np300211x
31. Hassan WHB. New β-Carboline Alkaloid from Marine Sponge Hyrtios reticulatus. Biosciences Biotechnology Research Asia. 2012; 9(1): 39–42. Doi: 10.13005/bbra/964
32. Yamanokuchi R, Imada K, Miyazaki M, Kato H, Watanabe T, Watanabe M, Saeki Y, Yoshinaga S, Terasawa H, Iwasaki N, Yokosawa H, and Tsukamoto S. Hyrtioreticulins A–E, Indole Alkaloids Inhibiting the Ubiquitin-Activating Enzyme, from the Marine Sponge Hyrtios reticulatus. Bioorganic & Medicinal Chemistry. 2012; 20(14): 4437–4442. Doi: 10.1016/j.bmc.2012.05.044
33. Imada K, Sakai E, Kato H, Kawabata T, Yoshinaga S. Reticulatins A and B and Hyrtioreticulin F from the Marine Sponge Hyrtios reticulatus. Tetrahedron. 2013; 69(34): 7051–7055. doi: 10.1016/j.tet.2013.06.043
34. Hooper JNA and van Soest RWM. Systema Porifera, A Guide to the Classification of Sponges. Australia. 2002.
35. Jimenez DSM, Garzón SP, Rodríguez AD. Plakortides M and N, Bioactive Polyketide Endoperoxides from the Caribbean Marine Sponge Plakortis halichondrioides. Journal of Natural Products. 2003; 66(5): 655–661. doi: 10.1021/np030021h
36. Ye J, Zhou F, Al-Kareef AMQ, Wang H. Anticancer Agents from Marine Sponges. Journal of Asian Natural Products Research. 2015;17(1): 64–88. Doi: 10.1080/10286020.2014.970535
37. Mayer AMS, Gustafson KR. Marine Pharmacology in 2014–2015: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis, Antiviral, and Anthelmintic Activities; Affecting the Immune and Nervous Systems, and Other Miscellaneous. Marine Drugs. 2020; 18(1): 5-66. Doi: 10.3390/md18010005
38. Chang YC, Tseng SW, Liu LL, Chou Y, Ho YS, Lu MC, and Su JH. Cytotoxic Sesterterpenoids from a Sponge Hippospongia sp. Marine Drugs. 2012; 10: 987–997. doi:10.3390/md10050987.
39. Lee M, Liu Y, Lee Y, El-shazly M, Lai K. Heteronemin, a Marine Sesterterpenoid-Type Metabolite, Induces Apoptosis in Prostate LNcap Cells via Oxidative and ER Stress Combined with the Inhibition of Topoisomerase II and Hsp90. Marine Drugs. 2018;16(6): 204-228. doi: 10.3390/md16060204
40. Castro ME, Gonzales-Iriarte M, Barrero AF, tormo SN, Chapuli RM, Medina MA, and Quesada AR. Study of Puupehenone and Related Compounds as Inhibitors of Angiogenesis. International Journal Cancer. 2004;110(38):31-38. doi: 10.1002/ijc.20068.
41. Muthiyan R, Nambikkairaj B, Mahanta N, Immanuel T, Mandal RS, Kumaran K, and De AK. Antiproliferative and Proapoptotic Activities of Marine Sponge Hyrtios erectus Extract on Breast Carcinoma Cell Line ( MCF-7 ). Pharmacogn magazine. 2017; 13(49): 41–47. Doi: 10.4103/0973-1296.203983
42. Liu Y, Lee CO, Jung JH. Cyclitol Derivatives from the Sponge Sarcotragus sp. Bulletin Korean Chemical Society. 2002; 23(10): 1467-1469. Doi: 10.5012/bkcs.2002.23.10.1467
43. Ciavatta ML, Gresa MPL, Gavagnin M, Romero V, Melck D, Manzo E, Guo YW, Soest V, and Cimino G. Studies on Puupehenone-Metabolites of a Dysidea sp: Structure and Biological Activity. Tetrahedron. 2007; 63: 1380–1384. doi: 10.1016/j.tet.2006.11.088.
44. Tsukamoto S, Kawabata T, Kato H, Ohta T, Rotinsulu H, Mangindaan REP. Naamidines H And I, Cytotoxic Imidazole Alkaloids from The Indonesian Marine Sponge Leucetta chagosensis. Journal of Natural Products 2007; 70(10): 1658–1660. Doi: 10.1021/np070246i
45. Lee S, Park S, Oh J, Yangl C. Natural Inhibitors for Protein Prenyltransferase Compression. Planta Medica. 1998; 64(4): 303–308. doi: 10.1055/s-2006-957439
46. Kirn DH. New Treatment Approaches for Metastatic Breast Cancer. Expert Opinion on Investigational Drugs. 1995; 4(12): 1233–1251. doi: 10.1517/13543784.4.12.1233
47. Miramar MD, Costantini P, Ravagnan L, Saraiva LM, Haouzi D, Brothers G, Penninger JM, Peleato ML, Kroemer G, and Susin SA. NADH Oxidase Activity of Mitochondrial Apoptosis-inducing Factor. Journal of Biological Chemistry. 2001; 276(19): 16391–16398. Doi: 10.1074/jbc.M010498200
48. Morre DJ, Chueh PJ, Morré DM. Capsaicin Inhibits Preferentially the NADH Oxidase and Growth of Transformed Cells in Culture. Proceedings of the National Academy of Sciences of the United States of America. 1995; 92(6): 1831–1835. Doi: 10.1073/pnas.92.6.1831
49. Shang F, Gong X, Taylor A. Activity of Ubiquitin-Dependent Pathway in Response to Oxidative Stress: Ubiquitin-Activating Enzyme Is Transiently Up-Regulated. Journal of Biological Chemistry. 1997 sep 12; 272(37): 23086–23093. Doi: 10.1074/jbc.272.37.23086
50. Yang Y, Kitagaki J, Dai RM, Yien CT, Lorick KL, Ludwig RL, Pierre SA, Jensen JP, Davydov IV, Oberoi P, Li CCH, Kenten JH, Beutler JA, Vousden KH, and Weissman AM. Inhibitors of Ubiquitin-Activating Enzyme (E1), A New Class of Potential Cancer Therapeutics. Cancer Research. 2007;67(19): 9472–9481. Doi: 10.1158/0008-5472.CAN-07-0568
51. Haas AL, Warms JV., Hershko A, Rose IA. Ubiquitin-Activating Enzyme, Mechanism and Role in Protein-Ubiquitin Conjugation. Journal of Biological Chemistry. 1982;257(5): 2543–2548. Doi: 10.1016/s0021-9258(18)34958-5
52. Tsukamoto S, Hirota H, Imachi M, Fujimuro M. Himeic Acid A : A New Ubiquitin-Activating Enzyme Inhibitor Compoundd from a Marine-Derived Fungus, Aspergillus sp. Bioorganic & Medicinal Chemistry Letters. 2005; 15(1): 191–194. Doi: 10.1016/j.bmcl.2004.10.012
53. Setyowati EP, Purwantiningsih, Erawan FMY, Rahmanti S, Hanum NR, Devi NCM. Cytotoxic and Antimicrobial Activities of Ethyl Acetate Extract from Fungus Trichoderma reesei strain JCM 2267, Aspergillus flavus strain MC- 10-L, Penicillium sp, and Aspergillus fumigatus Associated with Marine Sponge Stylissa flabelliformis. Research J. Pharm. and Tech. 2021;14(10).