Author(s): Alexander Patera Nugraha, Nastiti Faradilla Ramadhani, Deny Saputra, Rifqah Ananda Mappananrang, Alqomariyah Eka Purnamasari, Amelia Aisyiah Anwar, Rini Devijanti Ridwan, Viol Dhea Kharisma, Albertus Putera Nugraha, Tengku Natasha Eleena Tengku Ahmad Noor, Nawira, Ira Widjiastuti, Tamara Yuanita


DOI: 10.52711/0974-360X.2022.00482   

Address: Alexander Patera Nugraha1,2,3*, Nastiti Faradilla Ramadhani2,3,4, Deny Saputra3,4, Rifqah Ananda Mappananrang5, Alqomariyah Eka Purnamasari5, Amelia Aisyiah Anwar5, Rini Devijanti Ridwan3,6, Viol Dhea Kharisma7, Albertus Putera Nugraha8, Tengku Natasha Eleena Tengku Ahmad Noor9,10, Nawira11, Ira Widjiastuti11, Tamara Yuanita11
1Orthodontics Department, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.
2Graduate Student of Dental Health Science, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.
3Dental Regenerative Research Group, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.
4Dentomaxillofacial Radiology Department, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.
5Undergraduate student, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.
6Oral Biology Department, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.
7Department of Biology, Fa

Published In:   Volume - 15,      Issue - 7,     Year - 2022

Dental caries is the world's biggest dental problem with an incidence of 95%, causing tooth demineralization and complications including pulp perforation and premature tooth loss. A non-toxic biomaterial is required for increasing dentine regeneration in reversible dental caries. Proanthocyanidin (PA) is grape seed-derived flavonoid as antibacterial, anti-inflammatory, and antioxidant. However, PA provides low bioavailability so that it can be combined with polyamidoamine-calcium phosphate (PAMAM-CP) nanoparticles as drug delivery system. The investigation of PA and PAMAM-CP nanoparticles paste-based as innovation biomaterial for dental pulp capping may potential to induce dentine regeneration. The aim of this narrative review is to describe the combination of PA and PAMAM-CP nanoparticles as dental pulp capping biomaterial for dentin regeneration in dental caries. PA is able to express runt related transcription factor (Runx2), bone morphogenic protein-2 (BMP2), osteocalcin (OCN), and dentine sialophospoprotein (DSPP) which increase biomineralization and odontogenic differentiation. PAMAM is a macromolecule that provides attachment to dentine and induces remineralization. CP nanoparticles are calcium phosphate-based drug carriers that facilitate dentinal tubules penetration. PA loaded PAMAM-CP nanoparticles would be encapsulated releasing PA. PA suppresses Nuclear Factor-kB signaling pathway activation and decrease tumor necrosis factor-a so that inhibit dentinal matrix degradation. PA increases Runx2 and DSPP expression that manifest in dental pulp stem cells differentiation into odontoblasts. Combination of PA and PAMAM-CP nanoparticles may potential and beneficial as pulp capping biomaterial for dentin regeneration in dental caries.

Cite this article:
Alexander Patera Nugraha, Nastiti Faradilla Ramadhani, Deny Saputra, Rifqah Ananda Mappananrang, Alqomariyah Eka Purnamasari, Amelia Aisyiah Anwar, Rini Devijanti Ridwan, Viol Dhea Kharisma, Albertus Putera Nugraha, Tengku Natasha Eleena Tengku Ahmad Noor, Nawira, Ira Widjiastuti, Tamara Yuanita. An Insight of Proanthocyanidin and Polyamidoamine-Calcium Phosphate Nanoparticles as Biomaterial Candidate for Dentin regeneration in Dental Pulp Capping: A Narrative Review. Research Journal of Pharmacy and Technology. 2022; 15(7):2888-4. doi: 10.52711/0974-360X.2022.00482

Alexander Patera Nugraha, Nastiti Faradilla Ramadhani, Deny Saputra, Rifqah Ananda Mappananrang, Alqomariyah Eka Purnamasari, Amelia Aisyiah Anwar, Rini Devijanti Ridwan, Viol Dhea Kharisma, Albertus Putera Nugraha, Tengku Natasha Eleena Tengku Ahmad Noor, Nawira, Ira Widjiastuti, Tamara Yuanita. An Insight of Proanthocyanidin and Polyamidoamine-Calcium Phosphate Nanoparticles as Biomaterial Candidate for Dentin regeneration in Dental Pulp Capping: A Narrative Review. Research Journal of Pharmacy and Technology. 2022; 15(7):2888-4. doi: 10.52711/0974-360X.2022.00482   Available on:

1.    Suganya M. Soondron Y. Mahadeva-Rao US. Oral and Dietary Habits, and Immunological and Clinical Impacts on the Incidence of Dental Caries – A Review. Research J. Pharm. and Tech. 7(11):1348-1353.
2.    Meyer F. Enax J. Early Childhood Caries: Epidemiology, Aetiology, and Prevention. International Journal of Dentistry 2018;1-7.  DOI.10.1155/2018/1415873
3.    Gayathri M. Light Microscopic Changes in Pulp due to Dental Caries at Different Stages. Research J. Pharm. and Tech. 2015;8(7):935-936. DOI: 10.5958/0974-360X.2015.00156.0     
4.    Rezvi FB. Abilasha R. Breast and Bottle Feeding as Risk Factors for Dental Caries - Review. Research J. Pharm. and Tech 2016; 9(9):1508-1512. doi: 10.1371/journal.pone.0142922.  eCollection 2015.
5.    Subasree S. Geetha RV. Essential oils in prevention of Dental Caries - An In-Vitro study. Research J. Pharm. and Tech. 2015;8(7): 909-911. DOI: 10.5958/0974-360X.2015.00148.1
6.    Jain MR. Sethu G. Dental Caries and Obesity in Children of Age Groups 5-9 Years: A Preliminary Study. Research J. Pharm. and Tech. 2015;8(10):1353-1356. DOI: 10.5958/0974-360X.2015.00242.5   
7.    FDI World Dental Federation. Promoting oral health through fluoride: Adopted by the FDI general assembly: August 2017. Madrid, Spain. Int. Dent. J. 2018;68: 16–17. DOI: 10.1111/idj.12372
8.    World Health Organization. Ending Childhood Dental Caries. Ending childhood dental caries: WHO implementation manual. World Health Organization. 2017;3.
9.    Kameda M. Abiko Y. Washio J. Tanner A. Kressirer C. Mizoguchi I. Sugar Metabolism of Scardovia wiggsiae, A Novel Caries-Associated Bacterium. Frontiers in Microbiology. 2020;11. DOI: 10.3389/fmicb.2020.00479
10.    Maganti A. Goothy SSK. Goothy S. Penumatsa GS. Manyam R. Association of Dental caries with difference in Leucocyte count. Research J. Pharm. and Tech 2020; 13(2):621-623.  DOI: 10.5958/0974-360X.2020.00117.1
11.    Fejerskov O. Nyvad B. Kidd E. Dental Caries: The Disease and Its Clinical Management. 3rd ed. Oxford: Wiley Blackwell. 2015; 49-81.
12.    Rohini SV. Kumar J. Incidence of dental caries and pericoronitis associated with impacted mandibular third molar – A radiographic study. Research J. Pharm. and Tech. 2017; 10(4): 1081-1084. DOI: 10.5958/0974-360X.2017.00196.2
13.    Murthykumar K. The Impact of mushroom, chicory extracts, fresh fruits, xylitol containing chewing gums and milk products on dental caries-A Review. Research J. Pharm. and Tech. 2014;7(2): 266-268.
14.    Delimont NM. Carlson BN. Prevention of dental caries by grape seed extract supplementation: A systematic review. Nutrition and Health. 2019; 1-10. doi: 10.1177/0260106019887890.
15.    Liang K. Wang S. Tao S. Xiao S. Zhou H. Wang P. Cheng L. Zhou X. Weir M. Oates T. Li J. Xu H. Dental remineralization via poly(amidoamine) and restorative materials containing calcium phosphate nanoparticles. International Journal of Oral Science. 2019; 11(15):1-11. DOI: 10.1038/s41368-019-0048-z
16.    Fusayama T. New Concepts in Operative Dentistry: Differentiating Two Layers of Carious Dentin and Using an Adhesive Resin. Chicago: Quintessence, 1980:13–59.
17.    Nugraha AP. Mensana MP. Soebadi B. Husada D. Triyono EA. Prasetyo RA. Ernawati DS. Correlation of Low CD4+ Counts with High Dental Caries Prevalence in Children Living with Perinatal HIV/AIDS Undergoing Antiretroviral Therapy. Pesquisa Brasileira em Odontopediatria e Clínica Integrada 2019; 19(e4819):1-7.  
18.    Nugraha AP. Ernawati DS. Harijanti K. Parmadiati EA. Psychological Stress Induced Xerostomia and Hyposalivation: The Case Study in Indonesian Female Patient. J Int Dent Med Res 2019; 12(1): 216-219
19.    Singh H. Essentials of Preclinical Conservative Dentistry, 2nd ed. Wolters Kluwer. 2020;29-31.
20.    Preedy VR. Watson RR. Nuts and Seeds in Health and Disease Prevention, 2nd ed. Elsevier. 2020;117.
21.    Koch G. Poulsen S. Espelid I. Haubek D. Pediatric Dentistry: A Clinical Approach, 3rd ed. Wiley Blackwell. 2017;102.
22.    Lueckel H. Sebastian P. Kim R. Caries Management-Science and Clinical Practice. 2013;24-26.
23.    Garrocho‐Rangel A. Esparza‐Villalpando V. Pozos‐Guillen A. Outcomes of direct pulp capping in vital primary teeth with cariously and non‐cariously exposed pulp: A systematic review. International Journal of Pediatric Dentistry. 2020;30(5):536-546. doi: 10.1111/ipd.12633.
24.    Annusavice K. Chiayi S. Ralph R. Phillips’ science of dental materials. 12th ed. Chicago: Elsevier. 2013, 308.
25.    Iafisco M. Degli-Esposti L. Ramírez-Rodríguez G. Carella F. Gómez-Morales J. Ionescu. Fluoride-doped amorphous calcium phosphate nanoparticles as a promising biomimetic material for dental remineralization. Scientific Reports. 2018;8(1):5. doi: 10.1038/s41598-018-35258-x.
26.    Suciadi SP. Nugraha AP. Ernawati DS. Ayuningtyas NF. Narmada IB. Prahasanti C. Dinaryanti A. Ihsan IS. Hendrinto E. Susilowati H. Rantam FA. The Efficacy of Human Dental Pulp Stem Cells in regenerating Submandibular Gland Defects in Diabetic Wistar Rats (Rattus novergicus). Research J. Pharm. and Tech. 2019; 12(4):1573-1579. DOI: 10.5958/0974-360X.2019.00261.0   
27.    Dhar V. Marghalani AA. Crystal YO. Use of vital pulp therapies in primary teeth with deep caries lesions. Pediatr Dent 2017;39(5):E146-E159.
28.    Sismanoglu S. Ercal P. Dentin-Pulp Tissue Regeneration Approaches in Dentistry: An Overview and Current Trends. In: Turksen K. (eds) Cell Biology and Translational Medicine, Springer, Cham.: Advances in Experimental Medicine and Biology 2020;133-148. DOI: 10.1007/5584_2020_578
29.    Cannon L. Bioactive Material Considerations for Vital Pulp-Capping Protocols. 2nd ed. Dental Learning Systems, LLC; 2017, 3-10.
30.    Sujlana A. Pannu P. Direct pulp capping: A treatment option in primary teeth? Pediatric Dental Journal. 2017;1-2. DOI 10.1016/j.pdj.2016.10.001
31.    Mostafa D. Bayoumi FS. Taher HM. Abdelmonem BH. Eissa TF. Antimicrobial potential of Mentha Spp. essential oils as raw and loaded solid lipid nanoparticles against dental caries. Research J. Pharm. and Tech. 2020; 13(9):4415-4422. DOI: 10.5958/0974-360X.2020.00781.7
32.    Goldberg M. Indirect and Direct Pulp Capping: Reactionary vs. Reparative Dentins. JSM Dentistry. 2020;8(1):1119.
33.    Shenoy A. Mala K. Endodontics Principles & Practice. Elsevier. 2016,217.
34.    Garg N. Amit G. Textbook of Operative Dentistry. 2nd ed. New Delhi: Jaypee. 2013, 256-257.
35.    Torabinejad M. Walton R. Fouad A. Endodontics Principles and Practice, 5th ed. Elsevier Saunders. 2014, 28.
36.    Sullivan I. Proanthocyanidins: Food Sources, Antioxidant Properties and Health Benefits. Food and Beverage Consumption and Health; 2015, 186.
37.    Bladé C. Arola-Arnal A. Crescenti A. Suárez MI. Bravo F. Aragonès G. Proanthocyanidins and Epigenetics. In: Patel V., Preedy V.(eds) Handbook of Nutrition, Diet, and Epigenetics. Springer, Cham. 2017, 1-24.
38.    Alhasyimi AA. Rosyida NF. Rihadini MS. Postorthodontic Relapse Prevention by Administration of Grape Seed (Vitis vinifera) Extract Containing Cyanidine in Rats. Eur J Dent. 2019;13(4):629-634. doi: 10.1055/s-0039-3401440.
39.    Nugraha AP. Narmada IB. Ernawati DS. Dinaryanti A. Hendrianto E. Ihsan IS. Riawan W. Rantam FA. Osteogenic potential of gingival stromal progenitor cells cultured in platelet rich fibrin is predicted by core-binding factor subunit-α1/Sox9 expression ratio (in vitro). F1000Research 2018, 7:1134. doi: 10.12688/f1000research.15423.1.
40.    Nugraha AP. Narmada IB. Ernawati DS. Dinaryanti A. Hendrianto E. Ihsan IS. Riawan W. Rantam FA. In vitro bone sialoprotein-I expression in combined gingival stromal progenitor cells and platelet rich fibrin during osteogenic differentiation.  Tropical Journal of Pharmaceutical Research December 2018; 17 (12): 2341-2345. DOI: 10.4314/tjpr.v17i12.4
41.    Nugraha AP. Narmada IB. Ernawati DS. Dinaryanti A. Hendrianto E. Ihsan IS. Riawan W. Rantam FA. Bone alkaline phosphatase and osteocalcin expression of rat’s Gingival mesenchymal stem cells cultured in platelet-rich fibrin for bone remodeling (in vitro study). Eur J Dent 2018;12:566-7 doi: 10.4103/ejd.ejd_261_18.
42.    Prahasanti C. Nugraha AP. Saskianti T. Suardita K. Riawan W. Ernawati DS. Exfoliated Human Deciduous Tooth Stem Cells Incorporating Carbonate Apatite Scaffold Enhance BMP-2, BMP-7 and Attenuate MMP-8 Expression During Initial Alveolar Bone Remodeling in Wistar Rats (Rattus norvegicus). Clinical, Cosmetic and Investigational Dentistry 2020:12 79–85. doi: 10.2147/CCIDE.S245678.
43.    Saskianti T. Nugraha AP. Prahasanti C. Ernawati DS. Suardita K. Riawan W. Immunohistochemical analysis of stem cells from human exfoliated deciduous teeth seeded in carbonate apatite scaffold for the alveolar bone defect in Wistar rats ( Rattus novergicus). F1000Res. 2020;22(9):1164. doi: 10.12688/f1000research.25009.2.
44.    Chen H. Gu L. Liao B. Zhou X. Cheng L. Ren B. Advances of Anti-Caries Nanomaterials. Molecules. 2020;25(21):5047. doi: 10.3390/molecules25215047.
45.    Liang K. Xiao S. Weir M. Bao C. Liu H. Cheng L. Poly(amido amine) dendrimer and dental adhesive with calcium phosphate nanoparticles remineralized dentin in lactic acid. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2017;106(6):2414-2424. doi: 10.1002/jbm.b.34050.  
46.    Das I. Borah J. Sarma D. Hazarika S. Synthesis of PAMAM dendrimer and its derivative PAMOL: Determination of thermophysical properties by DFT. Journal of Macromolecular Science Part A. 2018;1–8.
47.    Ben-Nissan B. Advances in Calcium Phosphate Biomaterials. 2nd ed. Verlag Berlin Heidelberg: Springer; 2014, 511.
48.    De Groot K. Bioceramics Calcium Phosphate. 1st ed. CRC Press; 2018, 226.
49.    Heimann BR. Calcium Phosphate: Structure, Synthesis, Properties, and Applications. 1st ed. Germany: NOVA Biomechanic; 2012, 509.
50.    Tao S. He L. Xu H. Weir M. Fan M. Yu Z. Dentin remineralization via adhesive containing amorphous calcium phosphate nanoparticles in a biofilm-challenged environment. Journal of Dentistry. 2019; 89:103193. doi: 10.1016/j.jdent.2019.103193.  
51.    National Health Society. Prevention and Management of Dental Caries in Children. Scotland: Scottish Dental Clinical Effectiveness Programme. 2018:21.
52.    Song M. Yu B. Kim S. Hayashi M. Smith C. Sohn S. Clinical and Molecular Perspectives of Reparative Dentin Formation. Dental Clinics of North America. 2017;61(1):93-110.  doi: 10.1016/j.cden.2016.08.008.
53.    Delimont N. Carlson B. Prevention of dental caries by grape seed extract supplementation: A systematic review. Nutrition and Health. 2019;26(1):43-52. doi: 10.1177/0260106019887890.  
54.    Cooper P. Chicca I. Holder M. Milward M. Inflammation and Regeneration in the Dentin-pulp Complex: Net Gain or Net Loss? 2017;43(9S):S87-89. doi: 10.1016/j.joen.2017.06.011.
55.    Lee J. Kim Y. Kim Y. Choi M. Min S. Joo Y. Grape seed proanthocyanidin inhibits inflammatory responses in hepatic stellate cells by modulating the MAPK, Akt and NF-κB signaling pathways. International Journal of Molecular Medicine. 2017;40(1):226-234. doi: 10.3892/ijmm.2017.2997.  
56.    Leme-Kraus A. Aydin B. Vidal C. Phansalkar R. Nam J. McAlpine J. Biostability of the Proanthocyanidins-Dentin Complex and Adhesion Studies. Journal of Dental Research. 2017;96(4):406-412. doi: 10.1177/0022034516680586.
57.    Nam J. Phansalkar R. Lankin D. McAlpine J. Leme-Kraus A. Vidal C. Absolute Configuration of Native Oligomeric Proanthocyanidins with Dentin Biomodification Potency. The Journal of Organic Chemistry. 2017;82(3):1316-1329. doi: 10.1021/acs.joc.6b02161.
58.    Balalaie A. Rezvani M. Mohammadi B. Dual function of proanthocyanidins as both MMP inhibitor and crosslinker in dentin biomodification: A literature review. Dental Materials Journal. 2018;37(2):173-182. doi: 10.4012/dmj.2017-062.
59.    Feng G. Zheng K. Cao T. Zhang J. Lian M. Huang D. Repeated stimulation by LPS promotes the senescence of DPSCs via TLR4/MyD88-NF-κB-p53/p21 signaling. Cytotechnology. 2018;70(3):1023-1035. doi: 10.1007/s10616-017-0180-6.
60.    Yumoto H. Hirao K. Hosokawa Y. Kuramoto H. Takegawa D. Nakanishi T. The roles of odontoblasts in dental pulp innate immunity. Japanese Dental Science Review. 2018;54(3):105-117. doi: 10.1016/j.jdsr.2018.03.001.
61.    Atabek Ş. Özden A. Comparison of the Effect of Proanthocyanidin Surface Treatments on Shear Bond Strength of Different Cements. Materials. 2019;12(17):2676.  doi: 10.3390/ma12172676.
62.    El-Sayed FK. Elsalawy R. Ibrahim N. Gadalla M. Albargasy H. Zahra N. The Dental Pulp Stem/Progenitor Cells-Mediated Inflammatory-Regenerative Axis. Tissue Engineering Part B: Reviews. 2019;25(5):445-460. doi: 10.1089/ten.TEB.2019.0106.  
63.    Wang J. Du Y. Deng J. Wang X. Long F. He J. MicroRNA-506 Is Involved in Regulation of the Occurrence of Lipopolysaccharides (LPS)-Induced Pulpitis by Sirtuin 1 (SIRT1). Medical Science Monitor. 2019;25:10008-10015. doi: 10.12659/MSM.918172.
64.    Jafari R. Karamzadeh R. Pesaran HF. Sayyadizadeh F, Chekini Z. Aghajanpour S. Human closed and open apex premolar teeth express different toll‐like receptor. Molecular Genetics & Genomic Medicine. 2020;8(7):2. doi: 10.1002/mgg3.1268.
65.    Kwak S. Cheon Y. Lee C. Jun H. Yoon K. Lee M. Grape Seed Proanthocyanidin Extract Prevents Bone Loss via Regulation of Osteoclast Differentiation, Apoptosis, and Proliferation. Nutrients. 2020;12(10):3164. doi: 10.3390/nu12103164.
66.    Firouzmandi M. Vasei F. Giti R. Sadeghi H. Effect of silver diamine fluoride and proanthocyanidin on resistance of carious dentin to acid challenges. PLoS ONE. 2020;15(9):e0238590. doi: 10.1371/journal.pone.0238590.
67.    Hashemi-Beni B. Khoroushi M. Foroughi M. Karbasi S. Khademi A. Tissue engineering: Dentin – pulp complex regeneration approaches (A review). Tissue Cell 2017;49(5):552-564.  doi: 10.1016/j.tice.2017.07.002.
68.    Jeanneau C. Lundy F. El Karim I. About I. Potential Therapeutic Strategy of Targeting Pulp Fibroblasts in Dentin-Pulp Regeneration. J Endod. 2017;43(9S): S17-S24.  doi: 10.1016/j.joen.2017.06.007.
69.    Lin X. Xie F. Ma X. Hao Y. Qin H. Long J. Fabrication and characterization of dendrimer-functionalized nano-hydroxyapatite and its application in dentin tubule occlusion. J Biomater Sci Polym Ed. 2017;28(9):846-863. doi: 10.1080/09205063.2017.1308654.  
70.    Jani P. Liu C.  Zhang H. Younes K. Benson M. Qin C. The role of bone morphogenetic proteins 2 and 4 in mouse dentinogenesis. Archives of Oral Biology. 2018;90:33-39. doi: 10.1016/j.archoralbio.2018.02.004.
71.    Kanaya S. Xiao B. Sakisaka Y. Suto M. Maruyama K. Saito M. Extracellular calcium increases fibroblast growth factor 2 gene expression via extracellular signal-regulated kinase 1/2 and protein kinase A signaling in mouse dental papilla cells. 2018;26:e20170231. doi: 10.1590/1678-7757-2017-0231.
72.    Li X. Ban G. Al-Shameri B. He X. Liang D. Chen W. High-temperature Requirement Protein A1 Regulates Odontoblastic Differentiation of Dental Pulp Cells via the Transforming Growth Factor Beta 1/Smad Signaling Pathway. Journal of Endodontics. 2018;44(5):765-772.J doi: 10.1016/j.joen.2018.02.003. Epub 2018 Mar 24.
73.    Zeng L. Sun S. Han D. Liu Y. Liu H. Feng H. Long non-coding RNA H19/SAHH axis epigenetically regulates odontogenic differentiation of human dental pulp stem cells. Cellular Signalling. 2018;52:65-73. doi: 10.1016/j.cellsig.2018.08.015.
74.    Zeng L. Zhao N. Li F. Han D. Liu Y. Liu H. miR-675 promotes odontogenic differentiation of human dental pulp cells by epigenetic regulation of DLX3. Experimental Cell Research. 2018;367(1):104-111.
75.    Chen J. Liao L. Lan T. Zhang Z. Gai K. Huang Y. Treated dentin matrix‐based scaffolds carrying TGF-β1/BMP4 for functional bio-root regeneration. Applied Materials Today. 2020;20:100742. doi: 10.1016/j.yexcr.2018.03.035.
76.    Nawrot-Hadzik I. Matkowski A. Kubasiewicz-Ross P. Hadzik J. Proanthocyanidins and Flavan-3-ols in the Prevention and Treatment of Periodontitis—Immunomodulatory Effects, Animal and Clinical Studies. Nutrients. 2021;13(1):239. doi: 10.3390/nu13010239.
77.    Zhang Y. Zhang H. Yuan G. Yang G. Effects of transforming growth factor-β1 on odontoblastic differentiation in dental papilla cells is determined by IPO7 expression level. Biochemical and Biophysical Research Communications. 2021;545:105-111. doi: 10.1016/j.bbrc.2021.01.076.
78.    Lin P. Chang H. Yeh C. Chang M. Chan C. Kuo H. Transforming growth factor beta 1 increases collagen content, and stimulates procollagen I and tissue inhibitor of metalloproteinase-1 production of dental pulp cells: Role of MEK/ERK and activin receptor-like kinase-5/Smad signaling. Forrmos Med Assoc 2017;116(5):351-358. doi: 10.1016/j.jfma.2016.07.014.
79.    Ahmad A. Kaewpungsup P. Khorattanakulchai N. Rattanapisit K. Pavasant P. Phoolcharoen W. Recombinant human dentin matrix protein 1 (DMP1) induces the osteogenic differentiation of human periodontal ligament cells. Biotechnology Reports. 2019;23:e00348. doi: 10.1016/j.btre.2019.e00348. eCollection 2019 Sep.
80.    Bae J. Son W. Yoo K. Yoon S. Bae M. Lee D. Effects of Poly(Amidoamine) Dendrimer-Coated Mesoporous Bioactive Glass Nanoparticles on Dentin Remineralization. Nanomaterials. 2019;9(4):591. doi: 10.3390/nano9040591.
81.    Osmond M. Mizenko R. Krebs M. Rapidly Curing Chitosan Calcium Phosphate Composites as Dental Pulp Capping Agents. Regenerative Medicine Frontiers. 2019;1:e190002.
82.    Saito K. Nakatomi M. Ohshima H. Dentin Matrix Protein 1 Compensates for Lack of Osteopontin in Regulating Odontoblast like Cell Differentiation after Tooth Injury in Mice. Journal of Endodontics. 2019;46(1):89-96. doi: 10.1016/j.joen.2019.10.002.
83.    Wu Q. Shan T. Zhao M. Mai S. Gu L. The inhibitory effect of carboxyl-terminated polyamidoamine dendrimers on dentine host-derived matrix metalloproteinases in vitro in an etch-and-rinse adhesive system. R. Soc. open sci. 2019;6:182104. doi: 10.1098/rsos.182104.
84.    Howard J. Gardner L. Saifee Z. Geleil A. Nelson I. Colombo J. Synthesis and characterization of novel calcium phosphate glass-derived cements for vital pulp therapy. Journal of Materials Science: Materials in Medicine. 2020;31(1):9-10. doi: 10.1007/s10856-019-6352-5.
85.    Zhu N. Wang D. Xie F. Qin M. Lin Z. Wang Y. Fabrication and Characterization of Calcium-Phosphate Lipid System for Potential Dental Application. Frontiers in Chemistry. 2020;8:161. doi: 10.3389/fchem.2020.00161
86.    Chen Y. Koshy R. Guirado E. George A. STIM1 a calcium sensor promotes the assembly of an ECM that contains Extracellular vesicles and factors that modulate mineralization. Acta Biomaterialia. 2021;120:224-239. doi: 10.1016/j.actbio.2020.10.011.
87.    Gallorini M. Krifka S. Widbiller M. Schröder A. Brochhausen C. Cataldi A. Distinguished properties of cells isolated from the dentin-pulp interface. Annals of Anatomy - Anatomischer Anzeiger. 2021;234:151628. doi: 10.1016/j.aanat.2020.151628
88.    Liu C. He H. Developments and Applications of Calcium Phosphate Bone Cements. Springer Series in Biomaterials Science and Engineering; 2018;3-10.
89.    Sergey A. Ben-Nissan B. Conway R. Macha I. Advances in Calcium Phosphate Biomaterials. 1st ed. Heidelberg New York Dordrecht London: Springer; 2014, 485-511.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

56th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Recent Articles


Not Available