Author(s): Cut Soraya, Zulfan M. Alibasyah, Muhammad Nazar, Basri A. Gani


DOI: 10.52711/0974-360X.2022.00591   

Address: Cut Soraya1*, Zulfan M. Alibasyah2, Muhammad Nazar3, Basri A. Gani4
1Department Conservative of Dentistry, Dentistry Faculty, Universitas Syiah Kuala, Darussalam, Banda Aceh, Aceh, Indonesia.
2Department of Periodontology, Dentistry Faculty, Universitas Syiah Kuala, Darussalam, Banda Aceh, Aceh, Indonesia.
3Department of Chemical, Faculty of Education, Universitas Syiah Kuala, Darussalam, Banda Aceh, Aceh, Indonesia.
4Department of Oral Biology, Dentistry Faculty, Universitas Syiah Kuala, Darussalam, Banda Aceh, Aceh, Indonesia.
*Corresponding Author

Published In:   Volume - 15,      Issue - 8,     Year - 2022

Moringa oleifera has been famous as a natural medicine due to its rich vitamins, minerals, and flavonoids. However, the study of its effect on Enterococcus faecalis (E. faecalis) is limited. This study analyzes the chemical constituents of the ethanol extract of Moringa leaves using GC-MS and assessing the toxicity against E. faecalis. Moringa oleifera leaves were extracted by ethanol, evaporated, and the concentrated extract was analyzed using GC-MS instruments. The effect of cytotoxic of Moringa oleifera against E. faecalis was investigated by morphological and coagulation cells; also, the toxicity area was evaluated by ImageJ software. The GC-MS Spectrum was confirmed by NIST databased resulted in 17 different compounds including Alpha-butyrolactone, 1,3-cyclopentanedione, Glycerin, Cis-1,2,6-trimethylpiperidine, 1,2-epoxy cyclohexane, benzeneacetaldehyde, Isobutyraldehyde, propylhydrazone, 2-pyrrolidinone, 2-butenamide,2-cyano-3-hydroxy, 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one, 2-trideuteromethoxy-3-methyl pyrazine, Benzeneacetonitrile,4-hydroxy-, 1,2,3,3a,4,8b-hexahydrocyclopenta[b]indole, 1,3,4,5-tetrahydroxy-cyclohexane carboxylic acid, Hexadecanoic acid, n-cbz-beta-alanine, and 3-(2,2-dimethyltetrahydrofuran-3-yl)phenol. These active compounds are involved in the cytotoxicity against E. faecalis. The Moringa oleifera leaves have better toxicity at lower concentrations (12.5% and 6.25%) with 24 hours of incubating.: At least 17 chemical components were detected in the ethanol extract of Moringa oleifera leaves with quinic acid, glycerol, and DDMP as the most abundant compound. They probably affect the toxicity of E. faecalis cells.

Cite this article:
Cut Soraya, Zulfan M. Alibasyah, Muhammad Nazar, Basri A. Gani. Chemical Constituents of Moringa oleifera Leaves of Ethanol Extract and its Cytotoxicity against Enterococcus faecalis of Root Canal Isolate. Research Journal of Pharmacy and Technology. 2022; 15(8):3523-0. doi: 10.52711/0974-360X.2022.00591

Cut Soraya, Zulfan M. Alibasyah, Muhammad Nazar, Basri A. Gani. Chemical Constituents of Moringa oleifera Leaves of Ethanol Extract and its Cytotoxicity against Enterococcus faecalis of Root Canal Isolate. Research Journal of Pharmacy and Technology. 2022; 15(8):3523-0. doi: 10.52711/0974-360X.2022.00591   Available on:

1.    Othman L, Sleiman A, Abdel-Massih RM. Antimicrobial Activity of Polyphenols and Alkaloids in Middle Eastern Plants. Frontiers in Microbiology. 2019; 10:911-11.
2.    Soraya C, Mubarak Z, Gani BA. The growth and biofilm formation of Enterococcus faecalis in ethanol extract of Citrus aurantiifolia Indonesian species. Journal of Pharmacy & Pharmacognosy Research. 2020; 8(6): 558-68.
3.    Vaishnav A, Chandy A, Jhade D, Rai S. Pharmacognostical and Preliminary Phytochemical Studies on Moringa olifera Leaves. Research J. Pharmacognosy and Phytochemistry. 2011; 3(6): 272-274.
4.    Pachava VR, Krishnamurthy PT, Dahapal SP, Chinthamaneni PK. An updated review on "Miracle tree": Moringa oleifera. Res. J. Pharmacognosy and Phytochem. 2018; 10(1): 101-108.
5.    Charde RM, Charde MS, Fulzele SV, Satturwar PM, Kasture AV, Joshi SB. Evaluation of Ethanolic Extract of Moringa Oleifera for Wound Healing, Anti-inflammatory and Antioxidant Activities on Rats. Research Journal Pharmacy and Technology. 2011; 4(2):254-258.
6.    Kumbhare M, Sivakumar T, Surana A. Evaluation of Hypoglycemic potential of Moringa oleifera bark extracts on normal and Alloxanized diabetic rats. Research Journal of Pharmaceutical Dosage Forms and Technology. 2021; 13(2):95-9.
7.    Mulyaningsih TR, Yusuf S. Determination of minerals content in leaves of Moringa oleifera by neutron activation analysis. Ganendra Majalah IPTEK Nuklir. 2018;21(1):11-16.
8.    Lin H, Zhu H, Tan J, et al. Comparative analysis of chemical constituents of Moringa oleifera leaves from China and India by ultra-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry. Molecules. 2019;24(5):942.
9.    Dhimmar N, Patel NM, Gajera V, Lambole V. Pharmacological Activities of Moringa oleifera : An Overview. Research J. Pharm. and Tech. 8(4): April, 2015; Page 476-480.
10.    Pasha S, Khaleel M, Som S. Evaluation of Adaptogenic Activity of Moringa oleifera Lam. Research J. Pharmacology and Pharmacodynamics. 2010; 2(3): 243-247.
11.    Albrahim T, Binobead MA. Roles of Moringa oleifera Leaf Extract in Improving the Impact of High Dietary Intake of Monosodium Glutamate-Induced Liver Toxicity, Oxidative Stress, Genotoxicity, DNA Damage, and PCNA Alterations in Male Rats. Oxid Med Cell Longev. 2018;2018:4501097.
12.    Namitha R, Anjitha A. Isolation and Antimicrobial Screening of Some Phytochemicals from Moringa oleifera Lam. Res. J. Pharmacognosy and Phytochem. 2019; 11(2):70-72.
13.    Sopandani P, Iskandar BO, Ariwibowo T, Djamil MS. Antibacterial effects of moringa oleifera leaf extract against enterococcus faecalis in vitro. Scientific Dental Journal. 2020;4(1):16.
14.    Anderson AC, Jonas D, Huber I, et al. Enterococcus faecalis from Food, Clinical Specimens, and Oral Sites: Prevalence of Virulence Factors in Association with Biofilm Formation. Frontiers in Microbiology. 2016;6:1534-34.
15.    Wang Q-Q, Zhang C-F, Chu C-H, Zhu X-F. Prevalence of Enterococcus faecalis in saliva and filled root canals of teeth associated with apical periodontitis. International Journal of Oral Science. 2012;4(1):19-23.
16.    Alghamdi F, Shakir M. The Influence of Enterococcus faecalis as a Dental Root Canal Pathogen on Endodontic Treatment: A Systematic Review. Cureus. 2020;12(3):e7257-e57.
17.    Yusuf H, Husna F, Gani BA. The chemical composition of the ethanolic extract from Chromolaena odorata leaves correlates with the cytotoxicity exhibited against colorectal and breast cancer cell lines. Journal of Pharmacy & Pharmacognosy Research. 2021;9(3):344-56.
18.    Gani BA, Bachtiar EW, Bachtiar BM. The role of cigarettes smoke condensate in enhanced Candida albicans virulence of salivary isolates based on time and temperature. Journal of International Dental and Medical Research. 2017;10:769-77.
19.    Choudhry P. High-Throughput Method for Automated Colony and Cell Counting by Digital Image Analysis Based on Edge Detection. PloS one. 2016;11(2):e0148469-e69.
20.    Yang Y-J, Liu X, Wu H-R, et al. Radical scavenging activity and cytotoxicity of active quinic acid derivatives from Scorzonera divaricata roots. Food Chemistry. 2013;138(2-3):2057-63. doi.or/10.1016/j.foodchem.2012.10.122
21.    Gohari A, Saeidnia S, Mollazadeh K, et al. Isolation of a new quinic acid derivative and its antibacterial modulating activity. Daru: journal of Faculty of Pharmacy, Tehran University of Medical Sciences. 2010;18(1):69.
22.    Bai J, Wu Y, Wang X, et al. In vitro and in vivo characterization of the antibacterial activity and membrane damage mechanism of quinic acid against Staphylococcus aureus. Journal of Food Safety. 2018;38(1):e12416.
23.    Bai J, Wu Y, Zhong K, et al. A comparative study on the effects of quinic acid and shikimic acid on cellular functions of Staphylococcus aureus. Journal of Food Protection 2018;81(7):1187-92.
24.    Čechovská L, Cejpek K, Konečný M, Velíšek J. On the role of 2, 3-dihydro-3, 5-dihydroxy-6-methyl-(4 H)-pyran-4-one in antioxidant capacity of prunes. European Food Research and Technology. 2011;233(3):367-76.
25.    Idris A, Abubakar U. Phytochemical and antibacterial investigations of moringa (Moringa oleifera) leaf extract on selected bacterial pathogens. Journal of Microbiology and Antimicrobials. 2016;8(5):28-33.
26.    Kadhim EJ, AL-Shammaa DA. Phytochemical characterization using GC-MS analysis of methanolic extract of Moringa oleifera (Family Moringaceae) plant cultivated in Iraq. Chemistry and Material Research. 2014;6(5):9-26.
27.    Abdalla AM, Alwasilah HY, Mahjoub RAH, Mohammed HI, Yagoub M. Evaluation of antimicrobial activity of Moringa oleifera leaf extracts against pathogenic bacteria isolated from urinary tract infected patients. Journal of Advanced Laboratory Research in Biology. 2016;7(2):47-51.
28.    Arévalo-Híjar L, Aguilar-Luis MÁ, Caballero-García S, Gonzáles-Soto N, Valle-Mendoza D. Antibacterial and cytotoxic effects of Moringa oleifera (Moringa) and Azadirachta indica (Neem) methanolic extracts against strains of Enterococcus faecalis. International Journal of Dentistry. 2018;2018.
29.    Yoon BK, Jackman JA, Valle-González ER, Cho N-J. Antibacterial free fatty acids and monoglycerides: biological activities, experimental testing, and therapeutic applications. International Journal of Molecular Sciences. 2018;19(4):1114. 10.3390/ijms19041114
30.    Wang L, Hu C, Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. International Journal of Nanomedicine. 2017;12:1227.
31.    Nazzaro F, Fratianni F, De Martino L, Coppola R, De Feo V. Effect of essential oils on pathogenic bacteria. Pharmaceuticals. 2013;6(12):1451-74.
32.    Paikra BK. Phytochemistry and pharmacology of Moringa oleifera Lam. Journal of pharmacopuncture. 2017;20(3):194. 10.3831/KPI.2017.20.022
33.    Górniak I, Bartoszewski R, Króliczewski J. Comprehensive review of antimicrobial activities of plant flavonoids. Phytochemistry Reviews. 2019;18(1):241-72.
34.    Khan MI, Ahhmed A, Shin JH, et al. Green tea seed isolated saponins exerts antibacterial effects against various strains of gram positive and gram negative bacteria, a comprehensive study in vitro and in vivo. Evidence-Based Complementary and Alternative Medicine. 2018;2018.
35.    David CC, Lins ACS, Silva TMS, et al. Synthesis and Cytotoxicity Evaluation of a Series of 3-Alkenyl-2-Hydroxy-1,4-Naphthoquinones Obtained by an Efficient Knoevenagel Condensation. Journal of the Brazilian Chemical Society. 2019;30:8-18.
36.    Tse-Dinh Y-C. Bacterial topoisomerase I as a target for discovery of antibacterial compounds. Nucleic Acids Research. 2009;37(3):731-37.
37.    Yi S, Wang W, Bai F, et al. Antimicrobial effect and membrane-active mechanism of tea polyphenols against Serratia marcescens. World Journal of Microbiology and Biotechnology. 2014;30(2):451-60.
38.    Chakraborty P, Sharma S, Chakraborty S, Siddapurand A, Abraham J. Cytotoxicity and Antimicrobial Activity of Ipomoea batatas. Research J. Pharm. and Tech. 2018; 11(7): 2741-2746.
39.    Lü L, Zhang L, Wai MSM, Yew DTW, Xu J. Exocytosis of MTT formazan could exacerbate cell injury. Toxicology in Vitro. 2012;26(4):636-44.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

56th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Recent Articles


Not Available