Author(s): Uditi Handa, Anuj Malik, Kumar Guarve


DOI: 10.52711/0974-360X.2022.00633   

Address: Uditi Handa1,2, Anuj Malik2*, Kumar Guarve1
1Guru Gobind Singh College of Pharmacy, Yamuna Nagar - 135001, Haryana, India.
2Department of Pharmaceutics, MM College of Pharmacy, MM (DU), Mullana, Ambala, Haryana.
*Corresponding Author

Published In:   Volume - 15,      Issue - 8,     Year - 2022

Superfluity drug delivery system (SFDDS) is an auspicious conception to obtain adequate oral bioavailability of poorly soluble drugs especially those drugs which are belongs to Biopharmaceutical Classification System II. The drug is in the form of high energy or otherwise swiftly dissolving form such that generated the drug in intraluminal concentrations above the saturation solubility which is liable for desired pharmacological response to the systemic circulation due to superfluity mechanism. The mechanism is based upon spring-parachute and hang-glider effect which involves the inhibition of nucleation with the help of precipitation inhibitors which will act as parachute and glider effect in superfluity formulations and the spring and hang will act as technology used to formulated the dosage form such as amorphous solid dispersion, co-crystals, supersaturated self-emulsifying drug-delivery system correlating to want the biological response is inadequate in the aqueous solubility of drug encountered with formulation development of new drug and existing drug as well as for the new formulation development of existing drug. The methods related to solubilization process are not necessarily improving the absorption in GIT i.e., the free fraction of drug molecules in the inter-micellar phase is limited at the time of dissolution process of the intestinal barrier. This review articles belongs to mechanism of superfluity strategy which overcomes many of the obstacles and limitations of solubilization methods especially very poorly water-soluble drug.

Cite this article:
Uditi Handa, Anuj Malik, Kumar Guarve. A Review on the Concept of Superfluity Mechanism in Solubility Enhancement. Research Journal of Pharmacy and Technology. 2022; 15(8):3769-5. doi: 10.52711/0974-360X.2022.00633

Uditi Handa, Anuj Malik, Kumar Guarve. A Review on the Concept of Superfluity Mechanism in Solubility Enhancement. Research Journal of Pharmacy and Technology. 2022; 15(8):3769-5. doi: 10.52711/0974-360X.2022.00633   Available on:

1.    Gao P. Shi Y. Characterization of supersaturatable formulations for improved absorption of poorly soluble drugs. AAPS J. 2012; 14(4):703-13. doi: 10.1208/s12248-012-9389-7, PMID 22798021.
2.    Bevernage J. Brouwers J. Clarysse S. Vertzoni M et al. Drug supersaturation in simulated and human intestinal fluids representing different nutritional states. J Pharm Sci. 2010; 99(11):4525-34. doi: 10.1002/jps.22154, PMID 20845451.
3.    Brouwers J. Marcus E. Augustijns B. Supersaturating Drug Delivery Systems: The Answer to Solubility-Limited Oral Bioavailability? J. Pharm. Sci. 2009; 98(8):2549-72. doi: 10.1002/jps.21650. PMID 19373886.
4.    Charkoftaki G. Valsami G. Macheras P. From Supersaturated Drug Delivery Systems to the Rising Era of Pediatric Formulations. Chem. Biochem. Eng. Q. 2012; 26(4): 427–434.
5.    Amani A. Staffan T. Sitaram V. Dissolution and precipitation behavior of ternary solid dispersions of ezetimibe in biorelevant media. Drug Development and Industrial Pharmacy. 2016; 43(1): 79-88.
6.    Berthelsen R. Klitgaard M. Rades T. Müllertz A. In vitro digestion models to evaluate lipid-based drug delivery systems; present status and current trends. Adv. Drug Deliv. Rev. 2019; 142: 35–49. doi: 10.1016/j.addr.2019.06.010, PMID 31265861.
7.    Mathias NR. Xu Y. Patel D. Grass M. Caldwell B. Jager C. Mullin J. Morrison J et al. Assessing the risk of pH-dependent absorption for new molecular entities: a novel in vitro dissolution test, physicochemical analysis, and risk assessment strategy. Molecular Pharmaceutics. 2013; 10: 4063-73. PMID 24032349 DOI: 10.1021/mp400426f
8.    Joshi P and Sangamwar AT. Stabilizing supersaturated drug-delivery system through mechanism of nucleation and crystal growth inhibition of drugs. Therapeutic Delivery. 2018; 9 (12): 873–885. doi: 10.4155/tde-2018-0031, PMID 30444454.
9.    Joyce P. Dening TJ. Meola TR. Schultz HB. Holm R. Thomas N. Prestidge CA. Solidification to improve the biopharmaceutical performance of SEDDS: Opportunities and challenges. Adv. Drug Deliv. Rev. 2019; 142: 102–117. doi: 10.1016/j.addr.2018.11.006, PMID 30529138.
10.    Taupitz T. Dressman JB. Klein S. New formulation approaches to improve solubility and drug release from fixed dose combinations: case examples pioglitazone/glimepiride and ezetimibe/simvastatin. Eur. J Pharm Biopharm. 2013; 84(1): 208–18. doi: 10.1016/j.ejpb.2012.11.027, PMID 23246797.
11.    Guzman HR. Tawa M. Zhang Z et al. Combined use of crystalline salt forms and precipitation inhibitors to improve oral absorption of celecoxib from solid oral formulation. J Pharm Sci. 2007; 96(10): 2686-2702. doi: 10.1002/jps.20906, PMID 17518357.
12.    Mosharraf M. Sebhatu T. Nystro MC. The effects of disordered structure on the solubility and dissolution rates of some hydrophilic, sparingly soluble drugs. Int J Pharm. 1999; 177(1): 29–51. doi: 10.1016/s0378-5173(98)00317-2, PMID 10205602.
13.    Indulkar AS. Box KJ. Taylor R. Ruiz R. Taylor LS.  pH-Dependent Liquid–Liquid Phase Separation of Highly Supersaturated Solutions of Weakly Basic Drugs. Mol. Pharmaceutics. 2015; 12(7): 2365-2377. doi: 10.1021/acs.molpharmaceut.5b00056, PMID 25984769.
14.    Yang M and Gong W. Bioavailability improvement strategies for poorly water-soluble drugs based on the supersaturation mechanism: An update. J. Pharm. Pharm. Sci. 2016; 19(2): 208-225. doi: 10.18433/J3W904, PMID 27518171.
15.    Watanabe T. Hasegawa S. Wakiyama N. Kusai A. Senna M. Prediction of apparent equilibrium solubility of indomethacin compounded with silica by 13C solid state NMR. Int. J Pharm. 2002; 248(1-2): 123–129. doi: 10.1016/s0378-5173(02)00428-3, PMID 12429466
16.    Barker R. Abrahamsson B. Kruusmägi M. Application and Validation of an Advanced Gastrointestinal In Vitro Model for the Evaluation of Drug Product Performance in Pharmaceutical Development. J Pharm Sci. 2014; 103(11):3704-3712. doi: 10.1002/jps.24177.
17.    Gu C. Rao D. Gandhi R. Hilden J. Raghavan K. Using a Novel Multicompartment Dissolution System to Predict the Effect of Gastric pH on the Oral Absorption of Weak Bases with Poor Intrinsic Solubility. J Pharm Sci. 2005; 94(1): 199-208.    DOI:10.1002/JPS.20242. Corpus ID: 12581862
18.    Rodríguez-Hornedo N. Murphy D. Significance of controlling crystallization mechanisms and kinetics in pharmaceutical systems. J Pharm Sci. 1999;88(7):651-60. doi: 10.1021/js980490h, PMID 10393562.
19.    Bevernage J. Brouwers J. Brewster ME. Augustijns P. Evaluation of gastrointestinal drug supersaturation and precipitation: Strategies and issues. Int. J. Pharm. 2013; 453(1): 25–35. doi: 10.1016/j.ijpharm.2012.11.026, PMID 23194883.
20.    Jiang S. Ter Horst JH. Crystal Nucleation Rates from Probability Distributions of Induction Times. Cryst. Growth Des. 2010; 11(1): 256−261. doi: 10.1021/cg101213q.
21.    Roberts KJ, Docherty R, Tamura R. Engineering Crystallography: From Molecule to Crystal to Functional Form. Springer Nature: SCC27000. The Netherlands. 1st ed. 2017, XXIII, p. 478.
22.    Panagiotou T. Fisher RJ. Enhanced transport capabilities via nanotechnologies: impacting bioefficacy, controlled release strategies, and novel chaperones. J. Drug. Deliv. 2011; 125-35. doi: 10.1155/2011/902403, PMID 21603220.
23.    Sodhi I. Sangamwar AT. Microarray plate method for estimation of precipitation kinetics of celecoxib under biorelevant conditions and precipitate characterization. Mol. Pharmaceutics. 2018; 15(6): 2423–2436. doi: 10.1021/acs.molpharmaceut.8b00267, PMID 29746138.
24.    Yamashita T. Kokubo T. Zhao C. Ohki Y. Antiprecipitant screening system for basic model compounds using bio-relevant media. Journal of the Association for Laboratory Automation. 2010; 15 (4): 306-12. doi: 10.1016/j.jala.2009.12.001.
25.    Yamashita T. Ozaki S. Kushida I. Solvent shift method for anti-precipitant screening of poorly soluble drugs using biorelevant medium and dimethyl sulfoxide. Int J Pharm. 2011; 419 (1): 170-4. doi: 10.1016/j.ijpharm.2011.07.045, PMID 21840385.
26.    Berthelsen R. Klitgaard M. Rades T. Müllertz A. In vitro digestion models to evaluate lipid-based drug delivery systems; present status and current trends. Adv. Drug Deliv. Rev. 2019; 142: 35–49. doi: 10.1016/j.addr.2019.06.010, PMID 31265861.
27.    Kostewicz ES. Wunderlich M. Brauns U. Becker R. Bock T. Dressman JB. Predicting the precipitation of poorly soluble weak bases upon entry in the small intestine. J Pharm. Pharmacol. 2004; 56 (1): 43-51. doi: 10.1211/0022357022511, PMID 14980000.
28.    Overhoff KA. McConville JT. Yang W. Johnston KP. Peters JI. Williams RO. Effect of stabilizer on the maximum degree and extent of supersaturation and oral absorption of tacrolimus made by ultra-rapid freezing. Pharm Res. 2008; 25 (1): 167-75. doi: 10.1007/s11095-007-9417-y, PMID 17968635.
29.    Khanam Jasmina. Pharmaceutical Engineering. Crystallization. Reader of Pharmaceutical Engineering Division Department of Pharmaceutical Technology Jadavpur University Kolkatta-700032, 23-01-2007.
30.    Miller JM. Beig A. Krieg BJ. Carr RA. Borchardt TB. Amidon GE. Amidon GL. Dahan A. The solubility-permeability interplay: mechanistic modeling and predictive application of the impact of micellar solubilization on intestinal permeation, Mol Pharm. 2011; 8(5):1848-56. doi: 10.1021/mp200181v.
31.    Paidi SK. Jena KS. Preparation, in-vitro and in-vivo evaluation of spray-dried ternary soild dispersion of biopharmaceutics classification system class-II model drug. Journal of pharmacy and pharmacology. 2015; 67(5): 616-29. doi: 10.1111/jphp.12358.
32.    Rodde MS. Solubility and bioavailability enhancement of poorly aqueous soluble atorvastatin: in vitro, exvivo and in vivo studies. Bio Med Research International. 2014; 1-10.
33.    Høtoft Maria, Michaelsena, Scheyla D, Jørgensena Siqueira, Abdia Ismahan Mahad, Wasanb Kishor M, Thomas Radesa, Müllertza Anette. Fenofibrate oral absorption from SNEDDS and super-SNEDDS is not significantly affected by lipase inhibition in rats. European Journal of Pharmaceutics and Biopharmaceutics. 2019; 142: 258–264. doi: 10.1016/j.ejpb.2019.07.002. PMID: 31276759.
34.    Shinkar DM. Patil AN. Saudagar RB. Review Article: Solubility Enhancement by Solid Dispersion. Asian J. Pharm. Tech. 2017; 7(2): 72-76. doi: 10.5958/2231-5713.2017.00011.3.
35.    Dubin Cindy H. Excipients: Enhancing the new, poorly soluble APIs. Drug Development and Delivery. 2015; 15 (5): 45-50.
36.    Sonawale P. Patil A. Kamble A. Bhutkar M. Solubility Enhancement of Lipophilic Drugs - Solid Self Micro-Emulsifying Drug Delivery System. Asian J. Pharm. Tech. 2016; 6(3): 155-158. doi: 10.5958/2231-5713.2016.00022.2.
37.    Sharma D, Soni M, Kumar S, Gupta GD. Solubility Enhancement – Eminent Role in Poorly Soluble Drugs. Research J. Pharm. and Tech. 2009;2(2):220-224. Available on:
38.    Shelake SS. Patil SV. Patil SS. Formulation and evaluation of Fenofibrate loaded nanoparticle by precipitation method. Indian J. Pharma. Sci. 2018; 80(3): 420-427. doi: 10.4172/pharmaceutical-sciences.1000374.
39.    Jahangiri A. Evaluation of physicochemical properties and in vivo efficacy of atorvastatin/ezetimibe solid dispersion. Eur J Pharm Sci. 2016; 82: 21-30. doi: 10.1016/j.ejps.2015.11.007, PMID 26551750.
40.    Min-Soo K. Heejun P. Eun-Sol H. Current Status of Supersaturable Self-Emulsifying Drug Delivery Systems. Pharmaceutics. 2020; 12 (4): 365. doi: 10.3390/pharmaceutics12040365.
41.    Vandecruys R. Peeters J. Verreck G. Brewster ME. Use of a screening method to determine excipients which optimize the extent and stability of supersaturated drug solutions and application of this system to solid formulation design. Int. J Pharm. 2007; 342 (1-2): 168-75. doi: 10.1016/j.ijpharm.2007.05.006, PMID 17573214.
42.    Dokania S. Joshi AK. Self-microemulsifying drug delivery system (SMEDDS) - challenges and road ahead. Drug Deliv. 2015; 22(6): 675-690. doi: 10.3109/10717544.2014.896058, PMID 24670091.
43.    Chavan RB. Modi SR. Bansal AK. Role of solid carriers in pharmaceutical performance of solid supersaturable SEDDS of celecoxib. Int. J. Pharm. 2015; 495(1): 374–384. doi: 10.1016/j.ijpharm.2015.09.011, PMID 26364711.
44.    Tan A. Rao S. Prestidge CA. Transforming lipid-based oral drug delivery systems into solid dosage forms: An overview of solid carriers, physicochemical properties, and biopharmaceutical performance. Pharm. Res. 2013; 30(12): 2993–3017. doi: 10.1007/s11095-013-1107-3, PMID 23775443.
45.    Karki D. Kulkarni GS. Swamy SK. Sheeba FR. Formulation and Evaluation of Mucoadhesive Buccal Tablets of Curcumin and its Bioavailability Study. Research J. Pharm. and Tech 2017; 10(12): 4121-4128. doi: 10.5958/0974-360X.2017.00750.8
46.    Yu H. Xia D. Zhu Q. Zhu C. Chen D and Gan Y. Supersaturated polymeric micelles for oral cyclosporine A delivery.  Eur. J. Pharm. Biopharm. 2013; 85(3): 1325–1336. doi: 10.1016/j.ejpb.2013.08.003, PMID 23954511.
47.    Nguyen MH. Dong Yu HB and Hadinoto K. A supersaturating delivery system of silibinin exhibiting high payload achieved by amorphous nano-complexation with chitosan. Eur. J. Pharm. Sci. 2016; 89: 163–171. doi: 10.1016/j.ejps.2016.04.036, PMID 27140843.
48.    Lu Z. Yang Y and Covington R-A et al. Supersaturated controlled release matrix using amorphous dispersions of glipizide.  Int. J. Pharm. 2016; 511 (2): 957–968. doi: 10.1016/j.ijpharm.2016.07.072, PMID 27492020.
49.    Deninga TJ. Dmitry Z. Taylora LS. Application of an adsorption isotherm to explain in complete drug release from ordered mesoporous silica materials under supersaturating conditions. Journal of controlled release. 2019; 307: 186-199. doi: 10.1016/j.jconrel.2019.06.028.
50.    Deshmukh SA. Advanced delivery of poorly water-soluble drug atorvastatin by lipid-based formulation. Asian journal of pharmaceutical research and development. 2015; 3 (2): 21-38.
51.    ElKasabgy NA. Ocular supersaturated self-nanoemulsifying drug delivery systems (S-SNEDDS) to enhance econazole nitrate bioavailability. Int. J. Pharm. 2014; 460(1): 33–44. doi: 10.1016/j.ijpharm.2013.10.044, PMID 24184217.
52.    Ilevbare GA. Taylor LS.  Liquid–Liquid Phase Separation in Highly Supersaturated Aqueous Solutions of Poorly Water-Soluble Drugs: Implications for Solubility Enhancing Formulations. Cryst. Growth and Des. 2013; 13(4): 1497-1509. doi: 10.1021/cg301679h.
53.    Raina SA. Zhang GGZ. Alonzo DE. Wu J. Zhu D. Catron ND. Gao Y. Taylor LS.  Enhancements and Limits in Drug Membrane Transport Using Supersaturated Solutions of Poorly Water-Soluble Drugs. J. Pharm. Sci. 2014; 103(9): 2736-2748. doi: 10.1002/jps.23826, PMID 24382592.
54.    Hsieh YL. Ilevbare G. Van Eerdenbrugh B. Box K. Sanchez-Felix M. Taylor L. pH-Induced Precipitation Behavior of Weakly Basic Compounds: Determination of Extent and Duration of Supersaturation Using Potentiometric Titration and Correlation to Solid State Properties. Pharm. Res. 2012; 29(10): 2738-2753. doi: 10.1007/s11095-012-0759-8, PMID 22580905.
55.    Psachoulias D. Vertzoni M. Goumas K. Kalioras V. Beato S. Butler J. Reppas C.  Precipitation in and Supersaturation of Contents of the Upper Small Intestine After Administration of Two Weak Bases to Fasted Adults. Pharm. Res. 2011; 28(12): 3145-3158. doi: 10.1007/s11095-011-0506-6, PMID 21674262.
56.    Dahan A. Beig A. Ioffe-Dahan V. Agbaria R. Miller JM. The Twofold Advantage of the Amorphous Form as an Oral Drug Delivery Practice for Lipophilic Compounds: Increased Apparent Solubility and Drug Flux Through the Intestinal Membrane, AAPS J. 2013; 15(2): 347–353. doi: 10.1208/s12248-012-9445-3.
57.    Allen LV. Popovich NG. Ansel HC. Ansel’s Pharmaceutical Dosage Forms and Drug Delivery Systems. Lippincott, Williams and Wilkins. 2005; 100-101.
58.    Pinto JMO. Franciane A. Bazzo GC. Mendes C. Stulzer HK et al. Supersaturating drug delivery systems containing fixed-dose combination of two antihypertensive drugs: Formulation, in vitro evaluation and molecular metadynamics simulations. European Journal of Pharmaceutical Sciences. 2021;163: 105860.
59.    Hallouarda F. Mehennic L. Lahiani-Skibaa M. Anouard Y. Skibaa M. Solid Dispersions for Oral Administration: An Overview of the Methods for their Preparation. Current Pharmaceutical Design. 2016; 22: 1-17. DOI: 10.2174/1381612822666160726095916
60.    Serajuddin AT. Solid dispersion of poorly water-soluble drugs: early promises, subsequent problems, and recent breakthroughs. J. Pharm. Sci. 1999; 88: 1058–1066. doi: 10.1021/js980403l, PMID 10514356.
61.    Fazil M. Ansari SH. Ali J. Atorvastatin solid dispersion for bioavailability enhancement. J Adv Pharm Technol Res. 2016; 7(1): 22–26. doi: 10.4103/2231-4040.169873, PMID 26955607.
62.    Punčochová K. Ewing AV. Gajdošová M et al. Identifying the mechanisms of drug release from amorphous solid dispersions using MRI and ATR-FTIR spectroscopic imaging. Int J Pharm. 2015; 483:256–67. doi: 10.1016/j.ijpharm.2015.02.035, PMID 25686660
63.    Dahlberg C. Millqvist-Fureby A. Schuleit M. Furó I. Relationships between solid dispersion preparation process, particle size and drug release – an NMR and NMR microimaging study. Eur J Pharm Biopharm. 2010b; 76: 311–9. doi: 10.1016/j.ejpb.2010.06.006, PMID 20561585
64.    Huang Y.  Dai WG. Fundamental aspects of solid dispersion technology for poorly soluble drugs. Acta Pharm. Sin. B. 2014; 4(1):18-25. doi: 10.1016/j.apsb.2013.11.001.
65.    Baghel, S., Cathcart, H. and O’Reilly, N. J. Polymeric Amorphous Solid Dispersions: A Review of Amorphization, Crystallization, Stabilization, Solid-State Characterization, and Aqueous Solubilization of Biopharmaceutical Classification System Class II Drugs. J. Pharm. Sci. 2016; 105(9): 2527–2544. doi: 10.1016/j.xphs.2015.10.008.
66.    Schittny A. Huwyler J. Puchkov M. Mechanisms of increased bioavailability through amorphous solid dispersions: a review. Drug Deliv. 2020; 27(1): 110–127. doi: 10.1080/10717544.2019.1704940
67.    Khedekar K and Mittal S. Self-Emulsifying Drug Delivery System: A Review. International Journal of Pharmaceutical Sciences and Research. 2013; 4494-4507.
68.    Modi S. Xiang TX. Anderson BD. Enhanced active liposomal loading of a poorly soluble ionizable drug using supersaturated drug solutions. J Control Release. 2012; 162(2): 330-339. doi: 10.1016/j.jconrel.2012.07.001, PMID 22800581.
69.    Gubernator J. Active methods of drug loading into liposomes: recent strategies for stable drug entrapment and increased in vivo activity. Expert Opin Drug Deliv. 2011; 8(5): 565-580. doi: 10.1517/17425247.2011.566552, PMID 21492058.
70.    Zhang L, Zhang Q and X Wang. Drug-in-cyclodextrin-in-liposomes: A novel drug delivery system for flurbiprofen. Int J Pharm. 2015; 492: 40-45. doi: 10.1016/j.ijpharm.2015.07.011, PMID 26162980.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

56th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Recent Articles


Not Available