Author(s):
Nahla E. EL-Ashmawy, Enas A. EL-Zamarany, Naglaa F. Khedr, Hend M. Selim, Eman G. Khedr
Email(s):
hendmselim@gmail.com , hend.m.selim@pharm.tanta.edu.eg
DOI:
10.52711/0974-360X.2022.00639
Address:
Nahla E. EL-Ashmawy1, Enas A. EL-Zamarany2, Naglaa F. Khedr1, Hend M. Selim1, Eman G. Khedr1
1Biochemistry Department, Faculty of Pharmacy, Tanta University, Egypt.
2Clinical Pathology Department, Faculty of Medicine, Tanta University, Egypt.
*Corresponding Author
Published In:
Volume - 15,
Issue - 8,
Year - 2022
ABSTRACT:
Breast cancer is one of the most prevalence cancer that hits women around the world and the second cause of death among different cancer types. Breast cancer is heterogeneous and combines various subtypes and classes that makes the diagnosis and treatment a complicated issue. Thus, many efforts were done regarding discovering new biomarkers that help in early diagnosis, prognosis, treatment, which lead to better outcome along with enhancing survival rate. This review aimed to gather, concisely and briefly, some of the most recent discovered genes and proteins with high potential to be used as biomarkers for breast cancer detection and prognosis. We discussed, briefly, the promising role of tissue Lipocalin 1, Cysteine protease cathepsin, Ras associated proteins 22a, 4-Heterogeneity nuclear proteins A2/B1, 6-Insulinoma associated protein 1, 7- Fizzy-related protein 1 and Facio-genital dysplasia gene 3, in addition to serum Autotaxin –Lysophosphatidic acid in breast cancer diagnosis and prognosis.
Cite this article:
Nahla E. EL-Ashmawy, Enas A. EL-Zamarany, Naglaa F. Khedr, Hend M. Selim, Eman G. Khedr. New Shining Stars in The Sky of Breast Cancer Diagnosis and Prognosis: A Review. Research Journal of Pharmacy and Technology. 2022; 15(8):3808-3. doi: 10.52711/0974-360X.2022.00639
Cite(Electronic):
Nahla E. EL-Ashmawy, Enas A. EL-Zamarany, Naglaa F. Khedr, Hend M. Selim, Eman G. Khedr. New Shining Stars in The Sky of Breast Cancer Diagnosis and Prognosis: A Review. Research Journal of Pharmacy and Technology. 2022; 15(8):3808-3. doi: 10.52711/0974-360X.2022.00639 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2022-15-8-81
REFERENCES:
1. Alshaker H, Thrower H and Pchejetski D. Sphingosine kinase 1 in breast cancer-A new molecular marker and a therapy target. Frontiers in oncology. 2020 Mar 20;10:289. doi: 10.3389/fonc.2020.00289.
2. Dange, VS et al. A Review on Breas cancer: An Overview. Asian J. Pharm. Res. 2017; 7(1): 49-51. doi: 10.5958/2231-5691.2017.00008.9
3. Patidar A, et al. A Comprehensive Review on Breast Cancer. Asian J. Nur. Edu. & Research. 2017; 2(1): Jan.-March. 28-32.
4. Padmaja A, et al. Evaluate The effectiveness of Awareness programme with health Education on breast cancer and skill Training on breast self-Examination among rural women in chittoor Dist Andhra Pradesh-A Collaborative Research. Asian J. Nursing Education and Research. 2020; 10(1):97-102. doi: 10.5958/2349-2996.2020.00022.
5. Sinha B, et al. Biomarker Genes for Gynaecological Cancers. Research J. Pharm. and Tech 2016; 9(10):1641-1646. doi: 10.5958/0974-360X.2016.00329.2
6. Asaad R, Abdullah S. Breast Cancer Subtypes (BCSs) Classification according to Hormone Receptor Status: Identification of patients at High Risk in Jableh- Syria. Research J. Pharm. and Tech 2018; 11(8): 3703-3710. doi: 10.5958/0974-360X.2018.00680.7
7. Sudhakar K, et al. An overview on current Strategies in Breast Cancer Therapy. Research J. Pharmacology and Pharmacodynamics. 2013; 5(6): 353-35Geetha M, Menaka K, Padmavathi P. Awareness of Breast self-examination and risk factors of Breast Cancer among Women. Asian J. Nur. Edu. and Research.2017; 7(3): 413-416. doi: 10.5958/2349-2996.2017.00082.
8. Souza KCB, et al. Identification of cell-free circulating micrornas for the detection of early breast cancer and molecular subtyping. J Oncol. 2019 Aug 8;2019:8393769. doi: 10.1155/2019/8393769.
9. He M, et al . Rab22a is a novel prognostic marker for cell progression in breast cancer. Int J Mol Med. 2020 Apr;45(4):1037-1046. doi: 10.3892/ijmm.2020.4486.
10. Jayashree V, Velraj M. Breast Cancer and various Prognostic Biomarkers for the diagnosis of the disease: A Review. Research J. Pharm. and Tech. 2017; 10(9): 3211-3216. doi: 10.5958/0974-360X.2017.00570.4
11. Lakshmi KM1, et al. Assess the awareness regarding Early Identification, Prevention and Management of Breast Cancer among Early Adult Women. Asian J. Nursing Education and Research. 2019; 9(1):04-08. doi: 10.5958/2349-2996.2019.00002.8
12. Hussein T et al. Micro RNA 145 as Biomarker for Breast cancer. Research J. Pharm. and Tech. 2019; 12(12): 5923-5926. doi: 10.5958/0974-360X.2019.01027.8
13. Fatima Moselmani, Jumana Al- Saleh. Relation between Serum cyclo oxygenase-2 values and Tumor characteristics in breast cancer patients. Research J. Pharm. and Tech 2020; 13(9):4320-4322. doi: 10.5958/0974-360X.2020.00763.
14. Dartt DA. Tear lipocalin: structure and function. Ocul Surf. 2011 Jul;9(3):126-38. doi: 10.1016/s1542-0124(11)70022-2
15. Wojnar P et al. Human lipocalin-1, a physiological scavenger of lipophilic compounds, is produced by corticotrophs of the pituitary gland. J Histochem Cytochem. 2002 Mar;50(3):433-5. doi: 10.1177/002215540205000314.
16. Tong L, et al. Association of tear proteins with Meibomian gland disease and dry eye symptoms. Br J Ophthalmol. 2011 Jun;95(6):848-52. doi: 10.1136/bjo.2010.185256
17. Pieragostino D, et al. Shotgun proteomics reveals specific modulated protein patterns in tears of patients with primary open angle glaucoma naïve to therapy. Mol Biosyst. 2013 Mar; 9(6):1108-1116. doi.org/10.1039/C3MB25463A.
18. Zhang X, Cui Y, He M, Jiao Y, Yang Z. Lipocalin-1 Expression as a Prognosticator Marker of Survival in Breast Cancer Patients. Breast Care (Basel). 2020 Jun;15(3):272-280. doi: 10.1159/000503168.
19. Buss LA and Dachs GU. The role of exercise and hyperlipidaemia in breast cancer progression. Exerc Immunol Rev. 2018; 24:10-25.
20. Yang Y, et al. Identification of LCN1 as a Potential Biomarker for Breast Cancer by Bioinformatic Analysis. DNA Cell Biol. 2019 Oct;38(10):1088-1099. doi: 10.1089/dna.2019.4843.
21. Gormley JA, et al. The role of Cathepsin S as a marker of prognosis and predictor of chemotherapy benefit in adjuvant CRC: a pilot study. British journal of cancer. 2011 Nov 8;105(10):1487-94. doi: 10.1038/bjc.2011.408.
22. Lindahl C, et al. Increased levels of macrophage-secreted cathepsin S during prostate cancer progression in TRAMP mice and patients. Cancer Genomics Proteomics. 2009 May-Jun; 6(3):149-159.
23. Xu J, et al. Cathepsin S is aberrantly overexpressed in human hepatocellular carcinoma. Mol Med Rep. 2009 Sep-Oct;2(5):713-8. doi: 10.3892/mmr_00000161.
24. Yang Y,et al. Cathepsin S mediates gastric cancer cell migration and invasion via a putative network of metastasis-associated proteins. J Proteome Res. 2010 Sep 3;9(9):4767-78. doi: 10.1021/pr100492x.
25. Basu S, et al. Is There Any Role for Serum Cathepsin S and CRP Levels on Prognostic Information in Breast Cancer? The Swedish Mammography Cohort. Antioxid Redox Signal. 2015 Dec 1;23(16):1298-302. doi: 10.1089/ars.2015.6404.
26. Wilkinson R, et al. A bioavailable cathepsin S nitrile inhibitor abrogates tumor development. Mol Cancer. 2016; 15, 29
27. Yuan L, et al. Discovery of novel cathepsin inhibitors with potent anti-metastatic effects in breast cancer cells. Bioorg Chem. 2018 Dec;81:672-680. doi: 10.1016/j.bioorg.2018.09.029.
28. Kim S, et al. Regulating BRCA1 protein stability by cathepsin S-mediated ubiquitin degradation. Cell Death Differ. 2019; 26(5):812-825.
29. Shree T, et al. Macrophages and cathepsin proteases blunt chemotherapeutic response in breast cancer. Genes Dev. 2011 Dec 1;25(23):2465-79. doi: 10.1101/gad.180331.111.
30. Gautam J, et al. Down-regulation of cathepsin S and matrix metalloproteinase-9 via Src, a non-receptor tyrosine kinase, suppresses triple-negative breast cancer growth and metastasis. Exp Mol Med. 2018 Sep 5;50(9):1-14. doi: 10.1038/s12276-018-0135-9
31. Wilkinson RDA, et al. A novel role for cathepsin s as a potential biomarker in triple negative breast cancer. J Oncol. 2019 Jun 27; 3980273.
32. Mesa R, et al. Overexpression of Rab22a hampers the transport between endosomes and the Golgi apparatus. Exp Cell Res. 2005 Apr 1;304(2):339-53. doi: 10.1016/j.yexcr.2004.11.017.
33. Ishibashi K, et al. Identification and characterization of a novel Tre-2/Bub2/Cdc16 (TBC) protein that possesses Rab3A-GAP activity. Genes Cells. 2009 Jan;14(1):41-52. doi: 10.1111/j.1365-2443.2008.01251.x
34. Mosesson Y, Mills GB and Yarden Y . Derailed endocytosis: an emerging feature of cancer. Nat Rev Cancer. 2008 Nov;8(11):835-50. doi: 10.1038/nrc2521
35. Shakya S, et al. Rab22A recruits BLOC-1 and BLOC-2 to promote the biogenesis of recycling endosomes. EMBO Rep. 2018 Dec;19(12):e45918. doi: 10.15252/embr.201845918.
36. Yang Z, et al. Tumor suppressive microRNA-193b promotes breast cancer progression via targeting DNAJC13 and RAB22A. Int J Clin Exp Pathol. 2014 Oct 15; 7(11):7563-7570.
37. Sun L, et al. Regulation of RAB22A by mir-193b inhibits breast cancer growth and metastasis mediated by exosomes. Int J Oncol. 018 Dec;53(6):2705-2714. doi: 10.3892/ijo.2018.4571.
38. Wang C,et al. LncRNA DLEU1/microRNA-300/RAB22A axis regulates migration and invasion of breast cancer cells. Eur Rev Med Pharmacol Sci. 2019 Dec;23(23):10410-10421. doi: 10.26355/eurrev_201912_19680
39. Wang T, et al. Hypoxia-inducible factors and RAB22A mediate formation of microvesicles that stimulate breast cancer invasion and metastasis. Proc Natl Acad Sci U S A. 2014 Aug 5;111(31):E3234-42. doi: 10.1073/pnas.1410041111.
40. Chen M, David CJ and Manley JL. Tumor metabolism: hnRNP proteins get in on the act. Cell Cycle. 2010 May 15;9(10):1863-4. doi: 10.4161/cc.9.10.11675
41. Geuens T, et al. The hnRNP family: insights into their role in health and disease. Hum Genet. 2016 Aug;135(8):851-67. doi: 10.1007/s00439-016-1683-5
42. Trembleau S, et al. Immunodominant T-cell epitopes of hnRNP-A2 associated with disease activity in patients with rheumatoid arthritis. Eur J Immunol. 2010 Jun;40(6):1795-808. doi: 10.1002/eji.200939482.
43. Han J, et al. Effects of hnRNP B1 on DNA-PK activity, cell cycle and apoptosis in human lung adenocarcinoma cell line A549. Sichuan Da Xue Xue Bao Yi Xue Ban. 2008; 39(5):815-818. Chinese
44. Bouchal P, et al. Intact protein profiling in breast cancer biomarker discovery: Protein identification issue and the solutions based on 3D protein separation, bottom-up and top-down mass spectrometry. Proteomics. 2013 Apr;13(7):1053-8. doi: 10.1002/pmic.201200121
45. Han N, Li W and Zhang M. The function of the RNA-binding protein hnRNP in cancer metastasis. J Cancer Res Ther. 2013 Nov;9 Suppl:S129-34. doi: 10.4103/0973-1482.122506
46. Hu Y, et al. Splicing factor hnRNPA2B1 contributes to tumorigenic potential of breast cancer cells through STAT3 and ERK1/2 signaling pathway. Tumour Biol. 2017; 2017 Mar;39(3):1010428317694318. doi: 10.1177/1010428317694318.
47. Ma Y, et al. HnRNPA2/B1 is a novel prognostic biomarker for breast cancer patients. Genet Test Mol Biomarkers. 2020 Nov;24(11):701-707. doi: 10.1089/gtmb.2020.0086.
48. Lan MS and Breslin MB. Structure, expression, and biological function of INSM1 transcription factor in neuroendocrine differentiation. FASEB J. 2009 Jul; 23(7):2024-2033. doi: 10.1096/fj.08-125971
49. Razvi H, et al. INSM1 is a novel prognostic neuroendocrine marker for luminal B breast cancer. Pathology. 2021 Feb;53(2):170-178. doi: 10.1016/j.pathol.2020.07.004
50. Lilo MT, et al. Insm1 is more sensitive and interpretable than conventional immunohistochemical stains used to diagnose merkel cell carcinoma. Am J Surg Pathol. 2018 Nov;42(11):1541-1548. doi: 10.1097/PAS.0000000000001136..
51. Mukhopadhyay S, et al. Insulinoma-associated protein 1 (INSM1) is a sensitive and highly specific marker of neuroendocrine differentiation in primary lung neoplasms: an immunohistochemical study of 345 cases, including 292 whole-tissue sections. Mod Pathol. 2019 Jan;32(1):100-109. doi: 10.1038/s41379-018-0122-7.
52. Xin Z, et al. Insulinoma-associated protein 1 is a novel sensitive and specific marker for small cell carcinoma of the prostate. Hum Pathol. 2018 Sep;79:151-159. doi: 10.1016/j.humpath.2018.05.014.
53. Sinn HP and Kreipe H. A Brief Overview of the WHO Classification of Breast Tumors, 4th Edition, Focusing on Issues and Updates from the 3rd Edition. Breast care (Basel, Switzerland). 2013; 8(2): 149–154.
54. Righi L, et al. Neuroendocrine differentiation in breast cancer: established facts and unresolved problems. Semin Diagn Pathol. 2010 Feb;27(1):69-76. doi: 10.1053/j.semdp.2009.12.003
55. Kawasaki T, Kaira K. Insulinoma-associated protein 1 (INSM1) expression in breast carcinomas with neuroendocrine morphologies: application and future prospective. Virchows Arch. 2021 Jul;479(1):191-194. doi: 10.1007/s00428-020-02935-0.
56. Kudo N, et al. INSM1 immunostaining in solid papillary carcinoma of the breast. Pathol Int. 2021 Jan;71(1):51-59. doi: 10.1111/pin.13043
57. Mitra J, et al. Dual regulation of the anaphase promoting complex in human cells by cyclin A-Cdk2 and cyclin A-Cdk1 complexes. Cell Cycle. 2006; 5(6):661-666
58. Wan L, et al. The APC/C E3 ligase complex activator fzr1 restricts braf oncogenic function. Cancer discovery. 2017 Apr;7(4):424-441. doi: 10.1158/2159-8290.CD-16-0647.
59. Liu S,et al. FZR1 as a novel biomarker for breast cancer neoadjuvant chemotherapy prediction. Cell Death Dis. 2020; 11(9):804
60. The I, et al. Rb and FZR1/Cdh1 determine CDK4/6-cyclin D requirement in C. elegans and human cancer cells. Nat Commun. 2015 Jan 6;6:5906. doi: 10.1038/ncomms6906
61. Guarducci C,et al. Mechanisms of resistance to cdk4/6 inhibitors in breast cancer and potential biomarkers of response. Breast care (Basel, Switzerland). 2017 Oct;12(5):304-308. doi: 10.1159/000484167.
62. Susini T and Renda I. FGD3 gene as a new prognostic factor in breast cancer. Anticancer Res. 2020 Jul;40(7):3645-3649. doi: 10.21873/anticanres.14353
63. Hayakawa M, et al. Novel insights into FGD3, a putative GEF for Cdc42, that undergoes SCF(FWD1/beta-TrCP)-mediated proteasomal degradation analogous to that of its homologue FGD1 but regulates cell morphology and motility differently from FGD1. Genes Cells. 2008 Apr;13(4):329-42. doi: 10.1111/j.1365-2443.2008.01168.x.
64. Cheng WY, et al. Development of a prognostic model for breast cancer survival in an open challenge environment. Sci Transl Med. 2013 Apr 17;5(181):181ra50. doi: 10.1126/scitranslmed.3005974.
65. Willis S, et al. High expression of FGD3, a putative regulator of cell morphology and motility, is prognostic of favorable outcome in multiple cancers. JCO Precis Oncol. 2017 Oct 13;1:PO.17.00009. doi: 10.1200/PO.17.00009.
66. Ma C, et al. The prognostic value of faciogenital dysplasias as biomarkers in head and neck squamous cell carcinoma. Biomark Med. 2019 Nov;13(16):1399-1415. doi: 10.2217/bmm-2019-0273
67. Renda I,et al. Expression of FGD3 gene as prognostic factor in young breast cancer patients. Sci Rep. 2019 Oct 29; 9(1):15204
68. Susini T, et al. Immunohistochemical Evaluation of FGD3 Expression: A New Strong Prognostic Factor in Invasive Breast Cancer. Cancers (Basel). 2021 Jul 29;13(15):3824. doi: 10.3390/cancers13153824
69. Nakanaga K, et al. Autotaxin--an LPA producing enzyme with diverse functions. J Biochem. 2010 Jul;148(1):13-24. doi: 10.1093/jb/mvq052
70. Jankowski M. Autotaxin: its role in biology of melanoma cells and as a pharmacological target. Enzyme research. 2011 Mar 8;2011:194857. doi: 10.4061/2011/194857
71. Kazama S, et al. Immunohistochemical detection of autotaxin (ATX)/lysophospholipase D (lysoPLD) in submucosal invasive colorectal cancer. J Gastrointest Cancer. 011 Dec;42(4):204-11. doi: 10.1007/s12029-010-9186-4
72. Xia Q, et al. Cholera toxin inhibits human hepatocarcinoma cell proliferation in vitro via suppressing ATX/LPA axis. Acta pharmacologica Sinica. 2011 Aug;32(8):1055-62. doi: 10.1038/aps.2011.31.
73. Liu S, et al. ATX-LPA receptor axis in inflammation and cancer. Cell cycle (Georgetown, Tex.). 2009 Nov 15;8(22):3695-701. doi: 10.4161/cc.8.22.9937
74. Azare J, et al. Stat3 mediates expression of autotaxin in breast cancer. PloS one. 2011;6(11):e27851. doi: 10.1371/journal.pone.0027851.
75. Benesch MG et al. Tumor-induced inflammation in mammary adipose tissue stimulates a vicious cycle of autotaxin expression and breast cancer progression. FASEB J. 2015 Sep;29(9):3990-4000. doi: 10.1096/fj.15-274480.
76. Shim SJ, et al. The expressions of autotaxin-lysophosphatidate signaling-related proteins in metastatic breast cancer. Int J Clin Exp Pathol. 2019; 12(8):2920-2930.
77. Samadi N, et al. Autotaxin protects MCF-7 breast cancer and MDA-MB-435 melanoma cells against Taxol-induced apoptosis. Oncogene. 2009 Feb 19;28(7):1028-39. doi: 10.1038/onc.2008.442.
78. Brindley DN, et al. Role of Adipose Tissue-Derived Autotaxin, Lysophosphatidate Signaling, and Inflammation in the Progression and Treatment of Breast Cancer. Int J Mol Sci. 2020 Aug 18;21(16):5938. doi: 10.3390/ijms21165938.
79. Iwaki Y,et al. ONO-8430506: A Novel Autotaxin Inhibitor That Enhances the Antitumor Effect of Paclitaxel in a Breast Cancer Model. ACS Med Chem Lett. ONO-8430506: A Novel Autotaxin Inhibitor That Enhances the Antitumor Effect of Paclitaxel in a Breast Cancer Model
80. Shao Y, et al. Serum ATX as a novel biomarker for breast cancer. Medicine. 2019 Mar 15; 98(13), e14973. doi: 10.1097/MD.0000000000014973.