Author(s):
Jayanti Dhara, Madhumita Saha, Dibya Das, Runu Chakraborty
Email(s):
crunu@hotmail.com
DOI:
10.52711/0974-360X.2022.00717
Address:
Jayanti Dhara1, Madhumita Saha1, Dibya Das2, Runu Chakraborty1*
1Department of Food Technology and Biochemical Engineering, Jadavpur University, Kolkata, India.
2Department of Pharmaceutical Technology, JIS University, Kolkata, India.
*Corresponding Author
Published In:
Volume - 15,
Issue - 9,
Year - 2022
ABSTRACT:
A properly balanced diet can improve the immunity system and also prevent various diseases including COVID-19 which is caused by severe acute respiratory syndrome coronavirus 2 (SARC-Co2). This review mainly describes dietary guidelines or approaches to build up our immunity as well as better health and protect from corona virus. As we all know one line “Health is Wealth”. So this wealth can be established or secure by optimal diet. Basic food components that are carbohydrates, protein, fat, vitamin and minerals have various important functions to fight against diseases. Most of the documents encourage to consumption of fruits, green vegetables, proteins, whole grains and fluids. Vitamins such as C, E, D, A most important to boost up our immunity. Vitamin C and E also known as natural antioxidants because they protect our body from infection and vitamin C also helps to absorption of iron. Zinc selenium, amino acid and omega 3 fatty acids are necessary to fight COVID-19. Besides this good hygiene practice, proper physical practice or daily work out and proper amount of water intake can improve good health status and prevent chronic illness. Sleep is necessary to heal and rest our body especially during critical illness. Exercise helps to increase the level of white blood corpacell and antibody which helps to fight against infections. This paper discussed the role of these nutrients and specific functions related to improving COVID patients. These nutrients can protect our health from various infectious diseases as well as can decreases mortality and the morbidity rate of COVID-19 patients by improving immunity levels.
Cite this article:
Jayanti Dhara, Madhumita Saha, Dibya Das, Runu Chakraborty. The Impact of Nutrients on Coronavirus (Covid-19): A Review. Research Journal of Pharmacy and Technology. 2022; 15(9):4270-6. doi: 10.52711/0974-360X.2022.00717
Cite(Electronic):
Jayanti Dhara, Madhumita Saha, Dibya Das, Runu Chakraborty. The Impact of Nutrients on Coronavirus (Covid-19): A Review. Research Journal of Pharmacy and Technology. 2022; 15(9):4270-6. doi: 10.52711/0974-360X.2022.00717 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2022-15-9-77
REFERENCES:
1. Mueller A. McNamara M. Sinclair D. Why does covid 19 this proportionately affect older people? Ageing. 2020; 29(12): 9959-81. DOI: 10.18632/aging.103344.
2. Chuwdhury M. Hossain N. kashem M. shaid M. alam A. Immune response in COVID- 19: A review. Journal of infection and public health. 2020; 13, 1619-29. DOI:10.1016/j.jiph.2020.07.001.
3. Varga Z. Flammer AJ. Steiger P. Haberecker M. Andermatt R. Zinkernagel AS. Mehra MR. Schuepbach RA. Ruschitzka F. Moch H. Endothelial cell infection and endotheliitis in COVID-19. 2020; 395, 1417-18. DOI: 10.1016/S0140-6736(20)30937-5.
4. Channappanavar R. Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Seminars in Immunopathology. 2017; 39, 529-39. DOI: 10.1007/s00281-017-0629-x.
5. De FCRC. Campos CF. La FZSF. Marques MPC. Laviano A. Felipe MJ. Dietary Recommendations during the COVID 19 pandemic: an Extract. kompass Nutrition and Dietetics. 2021; 79(4): 382–93. DOI: 10.1093/nutrit/nuaa067
6. Machado P. Araujo M. Carvalho L. Carvalho E. Immune response mechanisms to infections. Continuing Medical Education. 2004; 79(6), 647-64.
7. Coelho RC. Corgosinhob F. Sanchesc F. Pradod C. João A. Mota F. Dietary Recommendations during the COVID-19 Pandemic: an Extract. kompass Nutrition and Dietetics. 2008; 1, 3-7. DOI: 10.1093/nutrit/nuaa067
8. Hoddinott P. Tappin D. Wright C. Breast feeding. BMJ (Clin Res Ed). 2008; 336, 881–87. DOI: 10.1136/bmj.39521.566296.BE
9. Haug A. Brand-Miller JC. Christophersen OA. McArthur J. Fayet F. Truswell S. A food “lifeboat”: food and nutrition considerations in the event of a pandemic or other catastrophe. The Medical Journal of Australia. 2007; 187, 11-2.
10. Palmer C. Nutritionally mediated programming of the developing immune system. Advances in Nutrition. 2011; 2, 377-95. DOI: 10.3945/an.111.000570
11. Molloy E. Murphy N. Vitamin D, Covid-19 and children. Irish Medical Journal. 2020; 113, 59.
12. Orlov A. Orlova M. Trofimova T. Kalmykov S. Kuznetsov D. The role of zinc and its compounds in leukemia. Journal of Biological Inorganic Chemistry. 2018; 23, 347–62. DOI: 10.1007/s00775-018-1545-9
13. Walsh J. Bowles S. Evans A. Vitamin D in obesity. Current Opinion in Endocrinology, Diabetes and Obesity, 2017; 24(6), 389-94. DOI: 10.1097/MED.0000000000000371
14. Hill A. Wendt S. Benstoem C. Neubauer C. Meybohm P. Langlois P. Adhikari N. Heyland D. Stoppe C. Vitamin C to improve organ dysfunction in cardiac surgery patients—review and pragmatic approach. Nutrients. 2018; 10, 1-29.
15. Ferreira C. Gahl W. Disorders of metal metabolism. Translation Science of Rare Disease. 2017; 2, 101-39. DOI: 10.3233/TRD-170015
16. Cao W. Fang W. Hou G. Han M. Xu X. Dong J. The psychological impact of the COVID-19 epidemic on college students in China. Psychiatry Research. 2020; pp. 287.
17. Chandasiri O. The COVID-19: impact on education. International Journal of Advanced Education and Research. 2020; 5, 13-4.
18. Dev S. Mahendra and Sengupta Rajeswari. Covid-19: Impact on the Indian Economy. 2020; 4, pp 1-48.
19. Calder PC. Polyunsaturated fatty acids, inflammation and immunity. Lipids . 2001; 36, 1007–24. DII: 10.1007/s11745-001-0812-7
20. Gleeson M. Nieman DC. Pedersen BK. Exercise, nutrition and immune function. Journal of Sports Science. 2004; 22, 115–25. DOI: 10.1080/0264041031000140590
21. Singh P. kesharwani R. keservani R. 6 - Protein, Carbohydrates, and Fats: Energy Metabolism. Sustained Energy for Enhanced Human Functions and Activity. 2017; 103-15. DOI:10.1016/B978-0-12-805413-0.00006-5
22. Clausen T. Sandoval D. Charlotte BS. Ward A. Carlin A. Esko J. SARS-CoV-2 Infection Depends on Cellular Heparan Sulfate and ACE2. Cell. 2020; 183, 1043-57. DOI: 10.1016/j.cell.2020.09.033
23. Volpi N. “Fast moving” and “slow moving” heparins, dermatan sulfate, and chondroitin sulfate: qualitative and quantitative analysis by agarose-gel electrophoresis. Carbohydrate Research. 1993; 247, 263-78. DOI: 10.1016/0008-6215(93)84259-9
24. McKay A. Heikura I. Burke L. Peeling P. Pyne D. Swelm RV. Cox G. Influence of periodizing dietary carbohydrate on iron regulation and immune function in elite triathletes. International Journal of Sports Nutrition and Exercise Metabolism. 2020; 30, 34-41. DOI: 10.1123/ijsnem.2019-0131
25. Das A. Das M. Ghosh S. Impact of nutritional status and anemia on COVID-19- is it a public health concern? Evidence from national family health survey-4 (2015-2016) India. Public Health. 2020; 185, 93-4. DOI: 10.1016/j.puhe.2020.06.001
26. Cruzat V. Macedo Rogero M. Noel Keane K. Curi R. Newsholme P. Glutamine: Metabolism and Immune Function, Supplementation and Clinical Translation. Nutrients. 2018; 10, 1-34. DOI: 10.3390/nu10111564
27. Muscogiuri G. Barrea L. Savastano S. Nutritional recommendations for CoVID-19 quarantine. European Journal of Clinical Nutrition. 2020; 74, 850-51. DOI: 10.1038/s41430-020-0635-2
28. Zhang L. Liu Y. Potential interventions for novel coronavirus in China: a systematic review. Journal of Medical Virology. 2020; 92, 479-90. DOI: 10.1002/jmv.25707
29. Scully M. Dixon H. Wakefield M. Association between commercial television exposure and fast-food consumption among adults. Public Health Nutrition. 2009; 12, 105–10. DOI: 10.1017/S1368980008002012
30. Kass DA. Duggal P. Cingolani O. Obesity could shift severe COVID-19 disease to younger ages. The Lancet. 2020; 395, 1544–45. DOI: 10.1016/S0140-6736(20)31024-2
31. Halford P. Carr A. Jovic T. Ali S. Whitaker I. Marik P. Smith A. Vitamin C- An Adjunctive Therapy for Respiratory Infection, Sepsis and COVID-19. Nutrients. 2020; 12, 117.–336. DOI: 10.3390/nu12123760
32. Tappel AL. Dillard CJ. In vivo lipid peroxidation: Measurement via exhaled pentane and protection by vitamin E. Fed. Proc. 1981; 40, 174–78.
33. Hafeman DG. Hoekstra WG. Lipid Peroxidation in Vivo during Vitamin E and Selenium Deficiency in the Rat as Monitored by Ethane Evolution. The journal of Nutrition. 1977; 107, 666–72.
34. Richard C. Lemonnier F. Thibault M. Couturier M. Auzepy P. Vitamin E deficiency and lipoperoxidation during adult respiratory distress syndrome. Critical Care Medicine. 1990; 18, 4–9.
35. Tian S. Hu W. Niu L. Liu H. Xu H. Xiao SY. Pulmonary pathology of early-phase 2019 novel coronavirus (COVID-19) pneumonia in two patients with lung cancer. Journal of Thoracic Oncology. 2020; 15, 700–4. DOI: 10.1016/j.jtho.2020.02.010
36. Xu Z. Shi L. Wang Y. Zhang J. Huang L. Zhang C. Liu S. Zhao P. Liu H. Zhu L. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. 2020; 8, 420–22. DOI: 10.1016/S2213-2600(20)30076-X
37. Itoh H. Ohkuwa T. Yamazaki Y. Shimoda T. Wakayama A. Tamura S. Miyamura M. Vitamin E supplementation attenuates leakage of enzymes following 6 successive days of running training. International Journal of Sports Medicine. 2000; 21, 369–74. DOI: 10.1055/s-2000-3777
38. Meydani SN. Meydani M. Vitamin E supplementation and in vivo immune response in healthy elderly subjects. JAMA. 1997; 277, 1380–86.
39. Lefebvre P. Martin PJ. Flajollet S. Dedieu S. Billaut X. Lefebvre B. Transcriptional Activities of Retinoic Acid Receptors. Vitamins & hormones. 2005; 70, 199–264. DOI: 10.1016/S0083-6729(05)70007-8
40. Tanumihardjo SA. Vitamin A: Biomarkers of nutrition for development. The American Journal of Clinical Nutrition. 2011; 94, 658S–65S.
41. Tang G. Bioconversion of dietary provitamin a carotenoids to vitamin A in humans. The American Journal of Clinical Nutrition. 2010; 91, 1468S-73S. DOI: 10.3945/ajcn.2010.28674G
42. Zhong M. Kawaguchi R. Kassai M. Sun H. Retina, retinol, retinal and the natural history of vitamin A as a light sensor. Nutrients. 2012; 4, 2069–96. DOI: 10.3390/nu4122069
43. McGrane MM. Vitamin A regulation of gene expression: Molecular mechanism of a prototype gene. The journal of Nutritional Biochemistry. 2007; 18, 497–508. DOI: 10.1016/j.jnutbio.2006.10.006
44. Conaway H. Henning P. Lerner UH. Vitamin a metabolism, action, and role in skeletal homeostasis. Endocrine Reviews. 2013; 34, 766–97. DOI: 10.1210/er.2012-1071
45. Fiedor J. Burda K. Potential role of carotenoids as antioxidants in human health and disease. Nutrients. 2014; 6, 466–88. DOI: 10.3390/nu6020466
46. Caccialanza R. Laviano A. Lobascio F. Montagna E. Bruno R. Ludovisi S. Corsico AG. Di SA. Belliato M. Calvi M. Early nutritional supplementation in non-critically ill patients hospitalized for the 2019 novel coronavirus disease (COVID-19): Rationale and feasibility of a shared pragmatic protocol. Nutrition. 2020; 74, 110835. DOI: 10.1016/j.nut.2020.110835
47. Trottier C. Colombo M. Mann KK. Miller WH. Ward BJ. Retinoids inhibit measles virus through a type I IFN-dependent bystander effect. FASEB J.. 2009; 23, 3203–12. DOI: 10.1096/fj.09-129288
48. Litonjua AA. Fat-soluble vitamins and atopic disease: What is the evidence? Proceedings of the Nutrition society. 2012; 71, 67–74. DOI: 10.1017/S002966511100334X
49. Zhou E. Li Y. Yao M. Wei Z. Fu Y. Yang Z. Niacin attenuates the production of pro-inflammatory cytokines in LPS-induced mouse alveolar macrophages by HCA2 dependent mechanisms. International Immunopharmacology. 2014; 23, 121–26. DOI: 10.1016/j.intimp.2014.07.006
50. Spinas E. Saggini A. Kritas SK. Cerulli G. Caraffa A. Antinolfi P. Pantalone A. Frydas A. Tei M. Speziali A. Crosstalk between Vitamin B and Immunity. Biol. Regul Homeost Agents. 2015; 29:283–88.
51. Hilgenfeld R. From SARS to MERS: Crystallographic studies on coronaviral proteases enable antiviral drug design. FEBS Journal. 2014; 281, 4085–96. DOI: 10.1111/febs.12936
52. Sheybani Z. Dokoohaki MH. Negahdaripour M. Dehdashti M. Zolghadr H. Moghadami M. Masoompour SM. Zolghadr AR. The Role of Folic Acid in the Management of Respiratory Disease Caused by COVID-19. 2020; DOI: 10.26434/chemrxiv.12034980.v1.
53. Holick MF. "Sunlight and vitamin D for bone health and prevention of autoimmune diseases, cancers, and cardiovascular disease". The American Journal of Clinical Nutrition. 2004; 80, 1678S–88S. DOI: 10.1093/ajcn/80.6.1678S
54. Rondanelli M. Miccono A. Lamburghini S. Avanzato I. Riva A. Allegrini P. Faliva MA. Peroni G. Nichetti M. Perna S. Self-Care for Common Colds: The Pivotal Role of Vitamin D, Vitamin C, Zinc, and Echinacea in Three Main Immune Interactive Clusters (Physical Barriers, Innate and Adaptive Immunity) Involved during an Episode of Common Colds-Practical Advice on Dosages and on the Time to Take These Nutrients/Botanicals in order to Prevent or Treat Common Colds. Evidence- Based Complementary and Alternative Medicine. 2018; pp. 1-36.
55. Beard JA. Bearden A. Striker R. Vitamin D and the anti-viral state. Journal of Clinical Virology. 2011; 50, 194–200. DOI: 10.1016/j.jcv.2010.12.006
56. Shumate H. Williams G. Green B. Krause M. Holland B. Wood S. Bohannon J. Boydston J. Freeburger D. Hooper I. Beck K. Yeager J. Altamura A. Biryukov J. Yolitz J. Schuit M. Wahl V. Hevey M. Dabisch P. Simulated Sunlight Rapidly Inactivates SARS-CoV-2 on Surfaces. The Journal of Infectious Diseases. 2020; 222, 214-22. DOI: 10.1093/infdis/jiaa334
57. Hewison M. An update on vitamin D and human immunity. Clinical Endocrinology. 2012; 76, 315–25. DOI: 10.1111/j.1365-2265.2011.04261.x
58. Wei R. Christakos S. Mechanisms underlying the regulation of innate and adaptive immunity by vitamin D. Nutrients. 2015; 7, 8251–60. DOI: 10.3390/nu7105392
59. Teshome A. Adane A. Girma B. Zeleke AM. The Impact of Vitamin D Level on COVID-19 Infection: Systematic Review and Meta-Analysis. Front Public Health. 2021; 9, 1-10. DOI: 10.3389/fpubh.2021.624559
60. Wessels I. Maywald M. Rink L. Zinc as a Gatekeeper of Immune Function. Nutrients. 2017; 9, 1-44. DOI: 10.3390/nu9121286
61. Maywald M. Wessels I. Rink L. Zinc Signals and Immunity. International journal of molecular sciences. 2017; 18, 1-34. DOI: 10.3390/ijms18102222
62. Sanna A. Zinc status and autoimmunity: a systematic review and meta-analysis. Nutrients. 2018; 10, 1-17. DOI: 10.3390/nu10010068
63. Te Velthuis AJ. Zn (2+) inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture. PLoS pathogens. 2010; 6. DOI: 10.1371/journal.ppat.1001176
64. Prasad AS. Fitzgerald JT. Bao B. Beck FW. Chandrasekar PH. Duration of symptoms and plasma cytokine levels in patients with the common cold treated with zinc acetate. A randomized, double-blind, placebo-controlled trial. Annals of Internal Med. 2000; 133, 245–52. DOI: 10.7326/0003-4819-133-4-200008150-00006
65. Hemila H. Chalker E. The effectiveness of high dose zinc acetate lozenges on various common cold symptoms: a meta-analysis. BMC Family Practice. 2015; 16, 1-11. DOI: 10.1186/s12875-015-0237-6
66. Hemila H. Petrus EJ. Fitzgerald JT. Prasad A. Zinc acetate lozenges for treating the common cold: an individual patient data meta-analysis. British Journal of Clinical Pharmacology. 2016; 82, 1393–98. DOI: 10.1111/bcp.13057
67. Sanderson S. Immune System Defence with Vitamin C and Magnesium. 2020; 8, 3971–76. DOI: 10.1002/fsn3.1719
68. Spritzler F. 10 Magnesium-Rich Foods That Are Super Healthy. 2018.
69. Dai Q. Zhu X. Manson JE. Song Y. Li X. Franke AA. Costello RB. Rosanoff A. Nian H. Fan L. Murff H. Ness RM. Seidner DL. Yu C. Shrubsole MJ. Magnesium status and supplementation influence vitamin D status and metabolism: results from a randomized trial. American journal of clinical nutrition. 2018; 108, 1249–58. DOI: 10.1093/ajcn/nqy274
70. Gombart AF. Pierre A. Maggini S. A review of micronutrients and the immune system-working in harmony to reduce the risk of infection. Nutrients. 2020; 12, 1-41. 236. DOI: 10.3390/nu12010236
71. Drewnowski A. The Nutrient Rich Foods Index helps to identify healthy, affordable foods. American journal of clinical nutrition. 2010; 91, 1095S–1101S. DOI: 10.3945/ajcn.2010.28450D
72. Calder P. Carr A. Gombart A. Eggersdorfer M. Optimal Nutritional Status for a Well-Functioning Immune System Is an Important Factor to Protect against Viral Infections. Nutrients. 2020; 12, 1-10. DOI: 10.3390/nu12041181
73. Panigada M. Bottino N. Tagliabue P. Grasselli G. Novembrino C. Chantarangkul V. Tripodi A. Hypercoagulability of COVID-19 patients in intensive care unit. A report of thromboelastography findings and other parameters of hemostasis. J. Thromb. Haemostasis. 2020; 18, 1738-42. DOI: 10.1111/jth.14850
74. Silva A. Atukorala S. Weerasinghe I. Ahluwalia N. Iron supplementation improves iron status and reduces morbidity in children with or without upper respiratory tract infections: a randomized controlled study in Colombo, Sri Lanka. The American journal of clinical nutrition. 2003; 77, 234–41. DOI: 10.1093/ajcn/77.1.234
75. Wenzhong L. Hualan L. COVID-19: attacks the 1-beta chain of hemoglobin and captures the porphyrin to inhibit human heme metabolism. Biological and medicinal chemistry. 2020; 10.
76. Avery JC. Hoffmann PR. Selenium, selenoproteins, and immunity. Nutrients. 2018; 10, 1-20. DOI: 10.3390/nu10091203
77. Harch PG. Hyperbaric oxygen treatment of novel coronavirus (COVID-19) respiratory failure. Medical Gas Research. 2020; 10, 61-2. DOI: 10.4103/2045-9912.282177
78. Naja F. Hamadeh R. Nutrition amid the COVID-19 pandemic: a multi-level framework for action. European Journal of Clinical Nutrition. 2020; 74, 1117–21. DOI: 10.1038/s41430-020-0634-3
79. Kamdar BB. Needham DM. Collop NA. Sleep deprivation in critical illness. Journal of Intensive Care Medicine. 2012; 27, 97–111. DOI: 10.1177/0885066610394322
80. Heyland DK. Stapleton RD. Mourtzakis M. Hough CL. Morris P. Deutz NE. Needham DM. Combining nutrition and exercise to optimize survival and recovery from critical illness: conceptual and methodological issues. Clinical nutrition. 35, 2016; 1196–1206. DOI: 10.1016/j.clnu.2015.07.003
81. Szabo G. Mandrekar P. A recent perspective on alcohol, immunity, and host defense. Alcohol Clin Exp Res. 2009; 33, 220–32. DOI: 10.1111/j.1530-0277. 2008.00842.x
82. Doremalen V. N, Bushmaker T, Morris DH. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. The New England journal of medicine. 2020; 382, 1564–67. DOI: 10.1056/NEJMc2004973