Author(s): Lili Legiawati, Fadilah Fadilah, Kusmarinah Bramono, Aditya Indra Pratama

Email(s): lililegiawati@yahoo.com

DOI: 10.52711/0974-360X.2023.00068   

Address: Lili Legiawati1*, Fadilah Fadilah2, Kusmarinah Bramono1, Aditya Indra Pratama1
1Department of Dermatology and Venereology, Faculty of Medicine Universitas Indonesia, Dr.CiptoMangunkusumo National General Hospital, Jakarta, 10430, Indonesia.
2Chemistry Department in Medical Sciences, Faculty of Medicine Universitas Indonesia, 10430, Indonesia.
*Corresponding Author

Published In:   Volume - 16,      Issue - 1,     Year - 2023


ABSTRACT:
Superoxide dismutase (SOD) and glutathione peroxidase (GPx) are both parts of the enzymatic line in the antioxidant framework which changes anion superoxide to a more stable compound like oxygen (O2) and hydrogen peroxide (H2O2). Centella asiatica significantly shows antioxidant activity in several studies with comparable activity to ascorbic acid and butylated hydroxytoluene. This study assessed the antioxidant properties of Centella asiatica by studying its interaction with SOD and GPx. Active compounds of Centella asiatica were selected based on their interactions with SOD and GPx to determine which compounds reacted significantly. Significant interaction in the docking study was determined by the binding energy of each compound to the enzymes. Active compound of Centella asiatica had been proven to interact with both SOD and GPx. SOD bound with asiaticoside binding energy -10.2310 kcal/mol and madecassic acid binding energy -9.0518 kcal/mol. Based on protein residue, the majority of the protein bods into Gln 118. Both asiaticosside and madecassic acid bound to Gln118. Madasiatic acid and asiaticoside are bound to GPx with the lowest binding energy ligand, respectively -10.1232, -9.8082, and -8.5552 kcal/mol. Both madasiatic acid and asiaticoside had common binding residue of Arg189, Glu239, and Glu244.Our study conclude that the active compounds of Centella asiatica (asiaticoside, madecassic acid, and madasiatic acid) had proven to react significantly with SOD and GPx based on docking studies.


Cite this article:
Lili Legiawati, Fadilah Fadilah, Kusmarinah Bramono, Aditya Indra Pratama. In Silico Study of Centella asiatica Derivatives as Antioxidant: Enhancer of Superoxide Dismutase and Glutathione Peroxidase Activity. Research Journal of Pharmacy and Technology 2023; 16(1):399-3. doi: 10.52711/0974-360X.2023.00068

Cite(Electronic):
Lili Legiawati, Fadilah Fadilah, Kusmarinah Bramono, Aditya Indra Pratama. In Silico Study of Centella asiatica Derivatives as Antioxidant: Enhancer of Superoxide Dismutase and Glutathione Peroxidase Activity. Research Journal of Pharmacy and Technology 2023; 16(1):399-3. doi: 10.52711/0974-360X.2023.00068   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2023-16-1-68


REFERENCES:
1.    Ray PD., Huang B-W., Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal. 2012;24:981–90. doi: 10.1016/j.cellsig.2012.01.008.
2.    Powers SK., Duarte J., Kavazis AN., Talbert EE. Reactive oxygen species are signalling molecules for skeletal muscle adaptation: Redox signalling and skeletal muscle. Exp Physiol. 2010;95:1–9. doi: 10.1113/expphysiol.2009.050526.
3.    Pourova J., Kottova M., Voprsalova M., Pour M. Reactive oxygen and nitrogen species in normal physiological processes: ROS and RNS in physiological processes. Acta Physiol. 2010;198:15–35. doi: 10.1111/j.1748-1716.2009.02039.x.
4.    Potbhare M., Phendarkar N., Khobragade D. In vitro Evaluation of Antioxidant Potential of N-Acetyl-D-Glucosamine. Asian J Res Pharm Sci. 2017;7:120. doi: 10.5958/2231-5659.2017.00019.4.
5.    Bresciani G., da Cruz IBM., González-Gallego J. Manganese Superoxide Dismutase and Oxidative Stress Modulation. Advances in Clinical Chemistry, vol. 68. Elsevier; 2015. p. 87–130.
6.    Sheng Y., Abreu IA., Cabelli DE., et al. Superoxide Dismutases and Superoxide Reductases. Chem Rev. 2014;114:3854–918. doi: 10.1021/cr4005296.
7.    Reddy PP., Rao UMV. Homology modeling and validation of bacterial superoxide dismutase enzyme, an antioxidant. Res J Pharm Technol. 2020;13:6202–5. doi: 10.5958/0974-360X.2020.01081.1.
8.    Arya B., Krishnaveni K., Sambathkumar R. Review on Antioxidant Supplements use in Cancer Chemotherapy. Res J PharmacolPharmacodyn. 2020;12:21. doi: 10.5958/2321-5836.2020.00005.1.
9.    Burgoyne JR., Mongue-Din H., Eaton P., Shah AM. Redox Signaling in Cardiac Physiology and Pathology. Circ Res. 2012;111:1091–106. doi: 10.1161/CIRCRESAHA.111.255216.
10.    Griess B., Tom E., Domann F., Teoh-Fitzgerald M. Extracellular superoxide dismutase and its role in cancer. Free RadicBiol Med. 2017;112:464–79. doi: 10.1016/j.freeradbiomed.2017.08.013.
11.    Kwon M-J., Kim B., Lee YS., Kim T-Y. Role of superoxide dismutase 3 in skin inflammation. J Dermatol Sci. 2012;67:81–7. doi: 10.1016/j.jdermsci.2012.06.003.
12.    Lebovitz RM., Zhang H., Vogel H., et al. Neurodegeneration, myocardial injury, and perinatal death in mitochondrial superoxide dismutase-deficient mice. Proc Natl Acad Sci. 1996;93:9782–7. doi: 10.1073/pnas.93.18.9782.
13.    Kumar Babu VN., Khurana N. A Review on Mitochondrial Dysfunction and Oxidative stress due to Complex-Ⅰ in Parkinson Disease. Res J PharmacolPharmacodyn. 2021:167–70. doi: 10.52711/2321-5836.2021.00031.
14.    Powers SK., Jackson MJ. Exercise-Induced Oxidative Stress: Cellular Mechanisms and Impact on Muscle Force Production. Physiol Rev. 2008;88:1243–76. doi: 10.1152/physrev.00031.2007.
15.    Brigelius-Flohé R. Tissue-specific functions of individual glutathione peroxidases. Free RadicBiol Med. 1999;27:951–65. doi: 10.1016/S0891-5849(99)00173-2.
16.    Chandrika UG., Prasad Kumara PAAS. Gotu Kola (Centella asiatica). Advances in Food and Nutrition Research, vol. 76. Elsevier; 2015. p. 125–57.
17.    Swastini DA., Udayana INK., Arisanti CIS. Cold cream combination of Garcinia mangostana L. Anredera cordifolia (Ten.) and Centella asiatica extracts on Burn Healing Activity Test. Res J Pharm Technol. 2021:2483–6. doi: 10.52711/0974-360X.2021.00437.
18.    Raju DC., Victoria TD., Biji N., Nikitha G. Evaluation of Antioxidant Potential of Ethanolic Extract of Centella asiatica L. Res J Pharm Technol. 2015;8:1289. doi: 10.5958/0974-360X.2015.00234.6.
19.    Mudjihartini N., Paramita R., Prijanti AR., Sarsanti PAN., Fadilah F., Purwaningsih EH. The Effects of Centella asiatica and Acalypha indica L. extracts on aging process. Res J Pharm Technol. 2020;13:787. doi: 10.5958/0974-360X.2020.00148.1.
20.    Flora SJS., Gupta R. Beneficial effects ofCentella asiatica aqueous extract against arsenic-induced oxidative stress and essential metal status in rats. Phytother Res. 2007;21:980–8. doi: 10.1002/ptr.2208.
21.    Subathra M., Shila S., Devi MA., Panneerselvam C. Emerging role of Centella asiatica in improving age-related neurological antioxidant status. Exp Gerontol. 2005;40:707–15. doi: 10.1016/j.exger.2005.06.001.
22.    Raju DC., Varghese RJ., Biji N. In vitro Production of Neurologically active Phytoconstituents from an elite Chemovariant of Centella asiatica (L.), identified from south Indian Populations. Res J Pharm Technol. 2017;10:2095. doi: 10.5958/0974-360X.2017.00366.3.
23.    Pittella F., Dutra R., Junior D., Lopes MT., Barbosa N. Antioxidant and Cytotoxic Activities of Centella asiatica (L) Urb. Int J Mol Sci. 2009;10:3713–21. doi: 10.3390/ijms10093713.
24.    Zhu F., Li XX., Yang SY., Chen YZ. Clinical Success of Drug Targets Prospectively Predicted by In Silico Study. Trends Pharmacol Sci. 2018;39:229–31. doi: 10.1016/j.tips.2017.12.002.
25.    Ahmad S. Recent advances in Pharmacology and Toxicology of Phytopharmaceuticals. Asian J Pharm Res. 2017;7:222. doi: 10.5958/2231-5691.2017.00034.X.
26.    Ekins S., Mestres J., Testa B. In silico pharmacology for drug discovery: methods for virtual ligand screening and profiling. Br J Pharmacol. 2007;152:9–20. doi: 10.1038/sj.bjp.0707305.
27.    Balaji EV., Selvan AT. Nanopharmacology: A Novel Approach in Therapeutics. Asian J Res Pharm Sci. 2019;9:9. doi: 10.5958/2231-5659.2019.00003.1.
28.    Rohini CK., Rajesh YC. A Review on Phytopharmacological Profile of Traditionally used medicinal plant Parkia biglandulosa (Mimosaceae). Asian J Pharm Res. 2020;10:34. doi: 10.5958/2231-5691.2020.00008.8.
29.    Krishna PN., Mohite YM. Insilico Activity Prediction of Thiazolidinediones Derivatives. Asian J Pharm Anal. 2018;8:39. doi: 10.5958/2231-5675.2018.00007.8.
30.    Antonyuk SV, Strange RW, Marklund SL, Hasnain SS. Bank R. RCSB PDB - 2JLP: Crystal structure of human extracellular copper-zinc superoxide dismutase. 2009. doi: 10.2210/pdb2JLP/pdb available from: https://www.rcsb.org/structure/2JLP
31.    Kavanagh, KL, Johansson C, Rojkova A, Umeano C, Bunkoczi G, Gileadi O. RCSB PDB - 2JLP: Crystal structure of human glutathione peroxidase 5. 2006. doi: 10.2210/pdb2I3Y/pdb available from: https://www.rcsb.org/structure/2I3Y
32.    Lu X, Hui L. superoxide dismutase [Homo sapiens]. 2003. Available from: https://www.ncbi.nlm.nih.gov/protein/AAR21563.1
33.    Sukenaga Y. Glutathione peroxidase [Homo sapiens]. 2005. Available from: https://www.ncbi.nlm.nih.gov/protein/CAA68491.1
34.    Yang B, Xu Y, Hu Y, Luo Y, Lu X, Tsui CK, Lu L, Liang X. Madecassic Acid protects against hypoxia-induced oxidative stress in retinal microvascular endothelial cells via ROS-mediated endoplasmic reticulum stress. Biomedicine & Pharmacotherapy. 2016 Dec 1;84:845-52. doi: 10.1016/j.biopha.2016.10.015
35.    Lee JW, Park HA, Kwon OK, Jang YG, Kim JY, Choi BK, Lee HJ, Lee S, Paik JH, Oh SR, Ahn KS. Asiatic acid inhibits pulmonary inflammation induced by cigarette smoke. International immunopharmacology. 2016 Oct 1;39:208-17. doi: 10.1016/j.intimp.2016.07.010
36.    Choi MJ, Zheng HM, Kim JM, Lee KW, Park YH, Lee DH. Protective effects of Centella asiatica leaf extract on dimethylnitrosamine‑induced liver injury in rats. Molecular medicine reports. 2016 Nov 1;14(5):4521-8. doi: 10.3892/mmr.2016.5809
37.    Tabassum R, Vaibhav K, Shrivastava P, Khan A, Ahmed ME, Javed H, Islam F, Ahmad S, Siddiqui MS, Safhi MM, Islam F. Centella asiatica attenuates the neurobehavioral, neurochemical and histological changes in transient focal middle cerebral artery occlusion rats. Neurological Sciences. 2013 Jun;34(6):925-33. doi: 10.1007/s10072-012-1163-1

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available