Author(s):
Christofori M.R.R. Nastiti, Rini Dwiastuti, Florentinus D.O. Riswanto
Email(s):
dikaocta@usd.ac.id
DOI:
10.52711/0974-360X.2023.00070
Address:
Christofori M.R.R. Nastiti1, Rini Dwiastuti1, Florentinus D.O. Riswanto2*
1Division of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Sanata Dharma, Yogyakarta 55282 Indonesia.
2Division of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Sanata Dharma, Yogyakarta 55282 Indonesia.
*Corresponding Author
Published In:
Volume - 16,
Issue - 1,
Year - 2023
ABSTRACT:
Resveratrol, a strong antioxidant and anti-inflammatory phytoalexin is potential to relieve impaired diabetic wound healing. Self-assembly nanoemulsions were developed to formulate good quality of resveratrol topical preparation. The surfactant system consisted of Kolliphor® RH 40 and Transcutol® were further optimized in terms of viscosity, pH and the percentage of transmittance. A central composite design combined with the response surface methodology successfully resulted in surface responses with the desirability value for viscosity, pH, and transmittance percentage were 0.99742, 0.60598, and 0.37137, respectively. These results contributed to the composite desirability of 0.6077. The optimal condition was obtained at a composition 5.70 g and 2.30 g of Kolliphor® RH 40 and Transcutol®, correspondingly.
Cite this article:
Christofori M.R.R. Nastiti, Rini Dwiastuti, Florentinus D.O. Riswanto. Response Surface Methodology Assisted Surfactant Optimization on the Novel Resveratrol Self-assembly Nanoemulsions. Research Journal of Pharmacy and Technology 2023; 16(1):411-7. doi: 10.52711/0974-360X.2023.00070
Cite(Electronic):
Christofori M.R.R. Nastiti, Rini Dwiastuti, Florentinus D.O. Riswanto. Response Surface Methodology Assisted Surfactant Optimization on the Novel Resveratrol Self-assembly Nanoemulsions. Research Journal of Pharmacy and Technology 2023; 16(1):411-7. doi: 10.52711/0974-360X.2023.00070 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2023-16-1-70
REFERENCES:
1. Greenhalgh DG. Wound healing and diabetes mellitus. Clin Plast Surg. 2003;30(1):37–45.
2. Huang X, Sun J, Chen G, Niu C, Wang Y, Zhao C, et al. Resveratrol promotes diabetic wound healing via SIRT1-FOXO1-c-Myc signaling pathway-mediated angiogenesis. Front Pharmacol. 2019;10:421.
3. Xu F, Zhang C, Graves DT. Abnormal cell responses and role of TNF-in impaired diabetic wound healing. Biomed Res Int. 2013;2013.
4. Maruyama K, Asai J, Ii M, Thorne T, Losordo DW, D’Amore PA. Decreased macrophage number and activation lead to reduced lymphatic vessel formation and contribute to impaired diabetic wound healing. Am J Pathol. 2007;170(4):1178–91.
5. Malone‐Povolny MJ, Maloney SE, Schoenfisch MH. Nitric oxide therapy for diabetic wound healing. Adv Healthc Mater. 2019;8(12):1801210.
6. Ochoa O, Torres FM, Shireman PK. Chemokines and diabetic wound healing. Vascular. 2007;15(6):350–5.
7. Senger DR, Cao S. Diabetic wound healing and activation of Nrf2 by herbal medicine. J Nat Sci. 2016;2(11).
8. Garraud O, Hozzein WN, Badr G. Wound healing: time to look for intelligent,‘natural’immunological approaches? BMC Immunol. 2017;18(1):1–8.
9. Ibrahim N, Wong SK, Mohamed IN, Mohamed N, Chin K-Y, Ima-Nirwana S, et al. Wound healing properties of selected natural products. Int J Environ Res Public Health. 2018;15(11):2360.
10. Dyck GJB, Raj P, Zieroth S, Dyck JRB, Ezekowitz JA. The effects of resveratrol in patients with cardiovascular disease and heart failure: a narrative review. Int J Mol Sci. 2019;20(4):904.
11. Zordoky BNM, Robertson IM, Dyck JRB. Preclinical and clinical evidence for the role of resveratrol in the treatment of cardiovascular diseases. Biochim Biophys Acta (BBA)-Molecular Basis Dis. 2015;1852(6):1155–77.
12. Pagar KR, Khandbahale S V, Phadtare DG. The Therapeutic Potential of Resveratrol: A Review of Clinical Trials. Asian J Pharm Res. 2019;9(3):193–9.
13. Öztürk E, Arslan AKK, Yerer MB, Bishayee A. Resveratrol and diabetes: A critical review of clinical studies. Biomed Pharmacother. 2017;95:230–4.
14. Szkudelski T, Szkudelska K. Resveratrol and diabetes: from animal to human studies. Biochim Biophys Acta (BBA)-Molecular Basis Dis. 2015;1852(6):1145–54.
15. Zhou X, Ruan Q, Ye Z, Chu Z, Xi M, Li M, et al. Resveratrol accelerates wound healing by attenuating oxidative stress-induced impairment of cell proliferation and migration. Burns. 2021;47(1):133–9.
16. Kaleci B, Koyuturk M. Efficacy of resveratrol in the wound healing process by reducing oxidative stress and promoting fibroblast cell proliferation and migration. Dermatol Ther. 2020;33(6):e14357.
17. Pando D, Matos M, Gutiérrez G, Pazos C. Formulation of resveratrol entrapped niosomes for topical use. Colloids surfaces B Biointerfaces. 2015;128:398–404.
18. Scognamiglio I, De Stefano D, Campani V, Mayol L, Carnuccio R, Fabbrocini G, et al. Nanocarriers for topical administration of resveratrol: a comparative study. Int J Pharm. 2013;440(2):179–87.
19. Nastiti CMRR, Ponto T, Mohammed Y, Roberts MS, Benson HAE. Novel Nanocarriers for Targeted Topical Skin Delivery of the Antioxidant Resveratrol. Vol. 12, Pharmaceutics. 2020. p. 1–15.
20. Riswanto FDO, Rohman A, Pramono S, Martono S. Application of response surface methodology as mathematical and statistical tools in natural product research. 2019; 9(10):125-133.
21. Poonia N, Lather V, Kaur B, Kirthanashri SV, Pandita D. Optimization and Development of Methotrexate-and Resveratrol-Loaded Nanoemulsion Formulation Using Box–Behnken Design for Rheumatoid Arthritis. Assay Drug Dev Technol. 2020;18(8):356–68.
22. Amina B-B, Roukia H, Mahfoud HA, Ahlem T, Chahrazed B, Houria M. Optimization of Extraction conditions of the Polyphenols, Flavonoids and the Antioxidant activity of the plant Ammosperma cinereum (Brassicaceae) through the Response Surface Methodology (RSM). Asian J Res Chem. 2020;13(1):1–6.
23. Benarima A, Laouini SE, Seghir B Ben, Belaiche Y, Ouahrani MR. Optimization of Ultrasonic-Assisted Extraction of Phenolic Compounds from Moringa Oleifera Leaves using Response Surface Methodology. Asian J Res Chem. 2020;13(5):307–11.
24. Kolekar YM. Understanding of DoE and its advantages in Pharmaceutical development as per QbD Approach. Asian J Pharm Technol. 2019;9(4):271–5.
25. Nastiti CMRR, Riswanto FDO. Analytical Method Validation and Formula Optimization of Topical Nanoemulsion Formulation Containing Resveratrol. Indones J Chem. 2021;
26. Bhattacharya S. Central composite design for response surface methodology and its application in pharmacy. In: Response Surface Methodology in Engineering Science. IntechOpen; 2021.
27. Talluri VP, Lanka SS, Saladi VR. Statistical optimization of process parameters by Central Composite Design (CCD) for an enhanced production of L-asparaginase by Myroides gitamensis BSH-3, a novel species. Avicenna J Med Biotechnol. 2019;11(1):59.
28. Lokhande SS. Microemulsions as Promising Delivery Systems: A Review. Asian J Pharm Res. 2019;9(2):90–6.
29. Pagar KR, Darekar AB. Nanoemulsion: A new concept of Delivery System. Asian J Res Pharm Sci. 2019;9(1):39–46.
30. Ahmed AA, Dash S. Application of Novel Nanoemulsion in Drug Targeting. Res J Pharm Technol. 2017;10(8):2809–18.
31. Ferdenache H, Bechiri O, Benhamza MEH, Samar MEH. Physical Stability Study of Liquid Surfactant Membrane. Asian J Res Chem. 2020;13(6):433–9.
32. Redkar MR, Hasabe PS, Jadhav ST, Mane PS, Kare DJ. Review on Optimization base Emulgel Formulation. Asian J Pharm Technol. 2019;9(3):228–37.
33. Sankari KU, Alagusundaram M, Sahithi GK, Chetty C, Ramkanth S, Angalaparameswari S, et al. Nanoemulsions-Approaching Thermodynamic Stability. Res J Pharm Technol. 2010;3(2):319–26.
34. Jadhav RP, Koli VW, Kamble AB, Bhutkar MA. A Review on Nanoemulsion. Asian J Res Pharm Sci. 2020;10(2):103–8.
35. Berthelsen R, Holm R, Jacobsen J, Kristensen J, Abrahamsson B, Müllertz A. Kolliphor surfactants affect solubilization and bioavailability of fenofibrate. Studies of in vitro digestion and absorption in rats. Mol Pharm. 2015;12(4):1062–71.
36. Cortés NM, Califano AN, Lorenzo G. Physical and chemical stability under environmental stress of microemulsions formulated with fish oil. Food Res Int. 2019;119:283–90.
37. Erdal MS, Özhan G, Mat MC, Özsoy Y, Güngör S. Colloidal nanocarriers for the enhanced cutaneous delivery of naftifine: characterization studies and in vitro and in vivo evaluations. Int J Nanomedicine. 2016;11:1027.
38. BASF. Kolliphor RH 40 [Internet]. 2019 [cited 2021 Jan 27]. Available from: https://pharmaceutical.basf.com/global/en/drug-for mulation/products/kolliphor-rh40.html
39. Javadzadeh Y, Adibkia K, Hamishekar H. Transcutol®(diethylene glycol monoethyl ether): A potential penetration enhancer. In: Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement. Springer; 2015. p. 195–205.
40. Pal R. Modeling the viscosity of concentrated nanoemulsions and nanosuspensions. Fluids. 2016;1(2):11.
41. Zupančič Š, Lavrič Z, Kristl J. Stability and solubility of trans-resveratrol are strongly influenced by pH and temperature. Eur J Pharm Biopharm. 2015;93:196–204.
42. Schmid-Wendtner M-H, Korting HC. The pH of the skin surface and its impact on the barrier function. Skin Pharmacol Physiol. 2006;19(6):296–302.
43. Silva PS, Zhdanov S, Starov VM, Holdich RG. Spontaneous emulsification of water in oil at appreciable interfacial tensions. Colloids Surfaces A Physicochem Eng Asp. 2017;521:141s–6.
44. Walker RM, Decker EA, McClements DJ. Physical and oxidative stability of fish oil nanoemulsions produced by spontaneous emulsification: Effect of surfactant concentration and particle size. J Food Eng. 2015;164:10–20.
45. Shakeel F, Baboota S, Ahuja A, Ali J, Aqil M, Shafiq S. Nanoemulsions as vehicles for transdermal delivery of aceclofenac. Aaps Pharmscitech. 2007;8(4):191–9.
46. Amdoun R, Khelifi L, Khelifi-Slaoui M, Amroune S, Asch M, Assaf-Ducrocq C, et al. The desirability optimization methodology; a tool to predict two antagonist responses in biotechnological systems: case of biomass growth and hyoscyamine content in elicited datura starmonium hairy roots. Iran J Biotechnol. 2018;16(1).