Author(s):
Rajni Sawanny, Archana Sharma, Shashank Jain, Swarupananda Mukherjee, Piyali Khamkat
Email(s):
swarup_mukherjee@rediffmail.com , swarupananda.mukherjee@nshm.com
DOI:
10.52711/0974-360X.2023.00077
Address:
Rajni Sawanny1, Archana Sharma1, Shashank Jain2, Swarupananda Mukherjee3*, Piyali Khamkat4
1Noida Institute of Engineering and Technology (Pharmacy Institute), Plot No. 19, Knowledge Park - II, Institutional Area, Greater Noida, Uttar Pradesh - 201306, India.
2Ram-Eesh Institute of Vocational and Technical Education, Plot No. 03, Knowledge Park-I, Greater Noida, Uttar Pradesh - 201306, India.
3NSHM Knowledge Campus, Kolkata – Group of Institutions, Department of Pharmaceutical Technology, 124, B.L Saha Road, Kolkata 700053.
4Department of Pharmaceutical Technology, Brainware University, 398, Ramkrishnapur Road, Barasat, Kolkata -125, India.
*Corresponding Author
Published In:
Volume - 16,
Issue - 1,
Year - 2023
ABSTRACT:
Numerous attempts were improved to access the bioavailability and clinical output of oral dosage forms. Different types of gastro retentive drug delivery systems (GRDDS) was developed to enhance the therapeutic efficacy of medications which are unstable at alkaline pH, results a narrow absorption window with active locally in the stomach, and gets easily solubilized in acidic conditions. So the physiological condition of the stomach and the different elements that influence GRDDS will be discussed. In general, this review will illuminate and direct detailing researchers in planning, formulation, and designing the GRDDS.
Cite this article:
Rajni Sawanny, Archana Sharma, Shashank Jain, Swarupananda Mukherjee, Piyali Khamkat. Gastro Retentive Drug Delivery System: Latest Approach towards Novel Drug Delivery. Research Journal of Pharmacy and Technology 2023; 16(1):453-458. doi: 10.52711/0974-360X.2023.00077
Cite(Electronic):
Rajni Sawanny, Archana Sharma, Shashank Jain, Swarupananda Mukherjee, Piyali Khamkat. Gastro Retentive Drug Delivery System: Latest Approach towards Novel Drug Delivery. Research Journal of Pharmacy and Technology 2023; 16(1):453-458. doi: 10.52711/0974-360X.2023.00077 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2023-16-1-77
REFRENCES:
1. Parikh DC and Amin AF. In vitro and in vivo techniques to assess the performance of gastro-retentive drug delivery systems: A review. Expert Opinion on Drug Delivery. 2008; 5(9): 951–965. doi: 10.1517/17425247.5.9.951.
2. Mehta M. Neeta. Pandey P. Mahajan S. Satija S. Gastro retentive drug delivery systems: An overview. Research Journal of Pharmacy and Technology. 2018; 11(5): 2157–2160. doi:10.5958/0974-360X.2018.00398.0.
3. Prajapati VD. Jani GK. Khutliwala TA. Zala BS. Raft forming system - An upcoming approach of gastroretentive drug delivery system. Journal of Controlled Release. 2013; 168(2): 151–165. doi: 10.1016/j.jconrel.2013.02.028.
4. Mandal UK. Chatterjee B. Senjoti FG. Gastro-retentive drug delivery systems and their in vivo success: A recent update. Asian Journal of Pharmaceutical Sciences. 2016; 11(5): 575–584. doi:org/10.1016/j.ajps.2016.04.007.
5. Patil H. Tiwari RV. Repka MA. Recent advancements in mucoadhesive floating drug delivery systems: A mini-review. Journal of Drug Delivery Science and Technology. 2016; 31: 65–71. doi:10.1016/j.jddst.2015.12.002.
6. Hwang SJ. Park H. Park K. Gastric retentive drug-delivery systems. Critical Reviews TM in Therapeutic Drug Carrier Systems. 1998; 15(3): 243–284. doi:10.1615/CritRevTherDrugCarrierSyst.v15.i3.20.
7. Tripathi J. Thapa P. Maharjan R. Jeong SH. Current state and future perspectives on gastroretentive drug delivery systems. Pharmaceutics. 2019; 11(4):193. doi: 10.3390/pharmaceutics11040193.
8. Davis SS. Formulation strategies for absorption windows. Drug Discovery Today. 2005; 10(4): 249–257. doi: 10.1016/S1359-6446(04)03351-3.
9. Thapa P and Jeong S. Effects of Formulation and Process Variables on Gastroretentive Floating Tablets with A High-Dose Soluble Drug and Experimental Design Approach. Pharmaceutics. 2018; 10(3): 161. doi: 10.3390/pharmaceutics10030161.
10. Talukder R and Fassihi R. Gastroretentive delivery systems: A mini review. Drug Development and Industrial Pharmacy. 2004; 30(10): 1019–1028. doi: 10.1081/ddc-200040239.
11. Salessiotis N. Measurement of the diameter of the pylorus in man. Part I. Experimental project for clinical application. The American Journal of Surgery. 1972 ; 124(3): 331–333. doi:org/10.1016/0002-9610(72)90036-0.
12. Clarke GM. Newton JM. Short MD. Gastrointestinal transit of pellets of differing size and density. International Journal of Pharmaceutics. 1993; 100 (1-3): 81–92. doi:10.1111/j.2042-7158.1990.tb06604.x.
13. Streubel A. Siepmann J. Bodmeier R. Drug delivery to the upper small intestine window using gastroretentive technologies. Current Opinion in Pharmacology. 2006; 6(5): 501–508. doi:10.1016/j.coph.2006.04.007.
14. Pattanayak D. Arun JK. Adepu R. Shrivastava B. Hossain CM. Das S. Formulation and Evaluation of Floating and Mucoadhesive Tablets containing Repaglinide. Research Journal of Pharmacy and Technology. 2020; 13(3): 1277–1284. doi:10.5958/0974-360X.2020.00235.8.
15. Sarmah J and Choudhury A. Formulation and Evaluation of Gastro Retentive Floating Tablets of Ritonavir. Research Journal of Pharmacy and Technology. 2020; 13(9): 4099–4104. doi:10.5958/0974-360X.2020.00724.6.
16. Devendiran B. Mothilal M. Damodharan N. Floating Drug Delivery an Emerging Technology with Promising Market value. Research Journal of Pharmacy and Technology. 2020 ;13(6): 3014–3020. doi:10.5958/0974-360X.2020.00533.8.
17. Gupta H. Bhandari D. Sharma A. Recent Trends in Oral Drug Delivery: A Review. Recent Patents on Drug Delivery and Formulation. 2009; 3(2): 162–173. doi:10.2174/187221109788452267.
18. Baumgartner S. Kristl J. Vrecer F. Vodopivec P. Zorko B. Optimisation of floating matrix tablets and evaluation of their gastric residence time. International Journal of Pharmaceutics. 2000; 195(1-2): 125–135. doi: 10.1016/s0378-5173(99)00378-6.
19. Jiménez-Martínez I. Quirino-Barreda T. Villafuerte-Robles L. Sustained delivery of captopril from floating matrix tablets. International Journal of Pharmaceutics.2008; 362(1-2): 37–43. doi:10.1016/j.ijpharm.2008.05.040.
20. Kim S. Hwang KM. Park YS. Nguyen TT. Park ES. Preparation and evaluation of non-effervescent gastroretentive tablets containing pregabalin for once-daily administration and dose proportional pharmacokinetics. International Journal of Pharmaceutics. 2018; 550(1-2): 160–169. doi: 10.1016/j.ijpharm.2018.08.038.
21. Tripathi J. Thapa P. Maharjan R. Jeong SH. Current State and Future Perspectives on Gastroretentive Drug Delivery Systems. Pharmaceutics. 2019; 11(4): 193. doi:10.3390/pharmaceutics11040193.
22. Klausner EA. Lavy E. Friedman M. Hoffman A. Expandable gastroretentive dosage forms. Journal of Controlled Release. 2003; 90(2): 143–162. doi:10.1016/s0168-3659(03)00203-7.
23. Garg R and Gupta G. Progress in Controlled Gastroretentive Delivery Systems. Tropical Journal of Pharmaceutical Research. 2008; 7(3): 1055–1066. doi:10.4314/tjpr.v7i3.14691.
24. Lopes CM. Bettencourt C. Rossi A. Buttini F. Barata P. Overview on gastroretentive drug delivery systems for improving drug bioavailability. International Journal of Pharmaceutics. 2016; 510(1): 144–158. doi:10.1016/j.ijpharm.2016.05.016.
25. Chen YC. Ho HO. Lee TY. Sheu MT. Physical characterizations and sustained release profiling of gastroretentive drug delivery systems with improved floating and swelling capabilities. International Journal of Pharmaceutics. 2013; 441(1-2): 162–169. doi:10.1016/j.ijpharm.2012.12.002.
26. Omidian H. Rocca JG. Park K. Advances in superporous hydrogels. Journal of Controlled Release. 2005; 102(1): 3–12. doi:10.1016/j.jconrel.2004.09.028.
27. Park H. Park K. Kim D. Preparation and swelling behavior of chitosan-based superporous hydrogels for gastric retention application. Journal of Biomedical Materials Research. 2006; 76(1): 144–150. doi:10.1002/jbm.a.30533.
28. Bardonnet PL. Faivre V. Pugh WJ. Piffaretti JC. Falson F. Gastroretentive dosage forms: Overview and special case of Helicobacter pylori. Journal of Controlled Release. 2006; 111(1-2): 1–18. doi:10.1016/j.jconrel.2005.10.031.
29. Bhalla S and Nagpal M. Comparison of Various Generations of Superporous Hydrogels Based on Chitosan-Acrylamide and In Vitro Drug Release. ISRN Pharmaceutics. 2013; 2013:1-8. doi:10.1155/2013/624841.
30. Fujimori J. Machida Y. Tanaka S. Nagai T. Effect of magnetically controlled gastric residence of sustained release tablets on bioavailability of acetaminophen. International Journal of Pharmaceutics. 1995; 119(1): 47–55. doi:10.1016/0378-5173(94)00368-F
31. Prajapati VD. Jani GK. Khutliwala TA. Zala BS. Raft forming system - An upcoming approach of gastroretentive drug delivery system. Journal of Controlled Release. 2013; 168(2): 151–165. doi: 10.1016/j.jconrel.2013.02.028.
32. Murphy C. Pillay V. Choonara YE. Toit LCD. Gastroretentive Drug Delivery Systems: Current Developments in Novel System Design and Evaluation. Current Drug Delivery. 2009; 6(5): 451–460. doi:10.2174/156720109789941687.
33. Gröning R. Berntgen M. Georgarakis M. Acyclovir serum concentrations following peroral administration of magnetic depot tablets and the influence of extracorporal magnets to control gastrointestinal transit. European Journal of Pharmaceutics and Biopharmaceutics. 1998; 46(3): 285–291. doi:10.1016/s0939-6411(98)00052-6.
34. Ito R. Machida Y. Sannan T. Nagai T. Magnetic granules: a novel system for specific drug delivery to esophageal mucosa in oral administration. International Journal of Pharmaceutics. 1990; 61(1-2): 109–117. doi:org/10.1016/0378-5173(90)90049-A.
35. Awasthi R and Kulkarni GT. Decades of research in drug targeting to the upper gastrointestinal tract using gastroretention technologies: where do we stand? Drug delivery. 2016; 23(2): 378–394. doi:10.3109/10717544.2014.936535.
36. Anand V. Kandarapu R. Garg S. Ion-exchange resins: Carrying drug delivery forward. Drug Discovery Today. 2001; 6(17): 905–914. doi:10.1016/s1359-6446(01)01922-5.
37. Jeong SH and Park K. Drug loading and release properties of ion-exchange resin complexes as a drug delivery matrix. International Journal of Pharmaceutics. 2008; 361(1-2): 26–32. doi:10.1016/j.ijpharm.2008.05.006.
38. Gaur PK. Mishra S. Bhardwaj S. Puri D. Kumar SS. Ion Exchange Resins in Gastroretentive Drug Delivery: Characteristics, Selection, Formulation and Applications. Journal of Pharmaceutical Sciences and Pharmacology. 2015; 1(4): 304–312. doi:10.1166/jpsp.2014.1037.
39. Seong HJ. Berhane NH. Haghighi K. Park K. Drug release properties of polymer coated ion-exchange resin complexes: Experimental and theoretical evaluation. Journal of Pharmaceutical Sciences. 2007; 96(3): 618–632. doi:10.1002/jps.20677.
40. Abouelatta SM. Aboelwafa AA. El-Gazayerly ON. Gastroretentive raft liquid delivery system as a new approach to release extension for carrier-mediated drug. Drug delivery. 2018; 25(1): 1161–1174. doi:10.1080/10717544.2018.1474969.
41. Youssef NAHA. Kassem AA. El-Massik MAE. Boraie NA. Development of gastroretentive metronidazole floating raft system for targeting Helicobacter pylori. International Journal of Pharmaceutics. 2015; 486(1-2): 297–305. doi:10.1016/j.ijpharm.2015.04.004.
42. Sarparanta MP. Bimbo LM. Mäkilä EM. Salonen JJ. Laaksonen PH. Helariutta AMK. Linder MB et al The mucoadhesive and gastroretentive properties of hydrophobin-coated porous silicon nanoparticle oral drug delivery systems. Biomaterials. 2012; 33(11): 3353–3362. doi:10.1016/j.biomaterials.2012.01.029.
43. Wang J. Tauchi Y. Deguchi Y. Morimoto K. Tabata Y. Ikada Y. Positively charged gelatin microspheres as gastric mucoadhesive drug delivery system for eradication of H. pylori. Drug delivery. 2000; 7(4): 237–243. doi:10.1080/107175400455173.
44. Shtenberg Y. Goldfeder M. Prinz H. Shainsky J. Ghantous Y. El-Naaj IA. Schroeder A et al Mucoadhesive alginate pastes with embedded liposomes for local oral drug delivery. International Journal of Biological Macromolecules. 2018; 111: 62–69. doi:10.1016/j.ijbiomac.2017.12.137.
45. Ch'ng HS. Park H. Kelly P. Robinson JR. Bioadhesive polymers as platforms for oral controlled drug delivery II: synthesis and evaluation of some swelling, water-insoluble bioadhesive polymers. Journal of Pharmaceutical Sciences.1985; 74(4): 399-405. doi:10.1002/jps.2600740407.
46. Smart JD. The basics and underlying mechanisms of mucoadhesion. Advanced Drug Delivery Reviews. 2005; 57(11): 1556–1568. doi:10.1016/j.addr.2005.07.001.
47. Andrews GP. Laverty TP. Jones DS. Mucoadhesive polymeric platforms for controlled drug delivery. European Journal of Pharmaceutics and Biopharmaceutics. 2009; 71(3): 505–518. doi:10.1016/j.ejpb.2008.09.028.
48. Inukai K. Takiyama K. Noguchi S. Iwao Y. Itai S. Effect of gel formation on the dissolution behavior of clarithromycin tablets. International Journal of Pharmaceutics. 2017; 521(1-2): 33–39. doi:10.1016/j.ijpharm.2017.01.065.
49. El-said IA. Aboelwafa AA. Khalil RM. ElGazayerly ON. Baclofen novel gastroretentive extended release gellan gum superporous hydrogel hybrid system: in vitro and in vivo evaluation. Drug Delivery. 2016; 23(1): 101–112. doi:10.3109/10717544.2014.905654.
50. Shah S and Pandya S. A Novel Approach In Gastro Retentive Drug Delivery System: Floating Drug Delivery System. International Journal Of Pharmaceutical Sciences And Research. 2021; 2(5): 7-18. doi:http://dx.doi.org/10.13040/IJPSR.0975-8232.
51. Biradar V. Basavarajaiah JM. Win MTT. Gudugunta L. Suresh KV. Kumar SM. Turagam N et al In vitro Evaluation of Gastro Retentive Drug Delivery System of Lansoprazole. Research Journal of Pharmacy and Technology.2019; 12(8): 3649–3653. doi:10.5958/0974-360X.2019.00622.X.
52. Abbott CR. Small CJ. Sajedi A. Smith KL. Parkinson JRC. Broadhead LL. Ghatei MA et al The importance of acclimatisation and habituation to experimental conditions when investigating the anorectic effects of gastrointestinal hormones in the rat. International Journal of Obesity. 2006; 30(2): 288-292. doi:10.1038/sj.ijo.0803137.
53. Badve SS. Sher P. Korde A. Pawar AP. Development of hollow/porous calcium pectinate beads for floating-pulsatile drug delivery. European Journal of Pharmaceutics and Biopharmaceutics. 2007; 65(1): 85–93. doi:10.1016/j.ejpb.2006.07.010.
54. Seth KCN and Gill NS. Gastro Retentive Drug Delivery System: A Significant tool to Increase the gastric residence time of drugs. International Journal of Current Pharmaceutical Research.2021; 13(1): 7–11. doi:org/10.22159/ijcpr.2021v13i1.40818.
55. Parikh DC and Amin AF. In vitro and in vivo techniques to assess the performance of gastro-retentive drug delivery systems: A review. Expert Opinion on Drug Delivery. 2008; 5(9): 951–965. doi:10.1517/17425247.5.9.951.
56. Tandon A and Jangra PK. Formulation and in vitro Evaluation of Lisinopril floating Gastroretentive Tablets. Research Journal of Pharmacy and Technology. 2021; 14(1): 207–213. doi:10.5958/0974-360X.2021.00036.6.