Author(s): Kushagra Nagori, Madhulika Pradhan, Kartik T. Nakhate, Hemant R. Badwaik, Reena Deshmukh, Ayushmaan Roy, Rashnita Sharma, Shobhit P. Srivastava, Sonia Chawla, Vishal Jain, Mukesh Sharma


DOI: 10.52711/0974-360X.2023.00777   

Address: Kushagra Nagori1, Madhulika Pradhan6, Kartik T. Nakhate4, Hemant R. Badwaik3, Reena Deshmukh1, Ayushmaan Roy1, Rashnita Sharma2, Shobhit P. Srivastava7, Sonia Chawla8, Vishal Jain5, Mukesh Sharma1*
1Rungta College of Pharmaceutical Sciences and Research, Bhilai, 490024, India.
2Rungta Institute of Pharmaceutical Education and Research, Bhilai, Chhattisgarh, 490024, India.
3Shri Shankaracharya Institute of Pharmaceutical Sciences and Research, Junwani, Bhilai, Chhattisgarh, 490020 India.
4Department of Pharmacology, Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule, Maharashtra 424001, India.
5Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, 492010, India.
6Gracious College of Pharmacy, Abhanpur, Chhattisgarh, 493661, India.
7Dr. M. C. Saxena College of Pharmacy, Lucknow, Uttar Pradesh, 226101, India.
8Dev Bhoomi Uttrakhand University, 248001, Uttrakhand.
*Corresponding Author

Published In:   Volume - 16,      Issue - 10,     Year - 2023

The recent pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has raised global health concerns. The main viral protease called 3-chymotrypsin-like cysteine protease (3CLpro) plays an important role in viral replication by polyproteins processing that are translated from viral RNA. Therefore, the present in silico docking study aimed to assess the inhibitory actions of various terpenoids against 3CLpro of SARS-CoV-2. Molecular docking was performed using ArgusLab 4.0.1. a computational docking program and the protein-ligand interaction was visualized by using Pymol 1.7 software. The inhibitory activity of terpenoids like abietic acid, ferruginol, rosmarinic acid, zingiberine, sugiol, kaempferol and betulinic acid was tested against 3CLpro (PDB ID: 6M2N) using molecular docking paradigm while antiviral drugs- remdesivir, darunavir and hydroxychlorquine- were used as standards for comparison. All phyto-constituents showed an effective binding interaction with 6M2N, and the binding affinity was ranged from –8.854 to –13.398 as compared to remdesivir, darunavir and hyroxychlorquine. Amongst tested compounds, abietic acid, ferruginol and betulinic acid exhibited promising enzyme interaction. Results indicate that based upon the binding energy of abietic acid, ferruginol and betulinic acid could be efficient SARS-CoV-2 3CLpro inhibitors. This is supported by the fact that the effects of some terpenoidal phytochemicals especially abietic acid, ferruginol and betulinic acid showed promising enzyme interaction as compared to remdesivir and darunavir. Therefore, further studies are warranted to confirm the effectiveness of abietic acid, ferruginol and betulinic acid for the therapy of COVID-19.

Cite this article:
Kushagra Nagori, Madhulika Pradhan, Kartik T. Nakhate, Hemant R. Badwaik, Reena Deshmukh, Ayushmaan Roy, Rashnita Sharma, Shobhit P. Srivastava, Sonia Chawla, Vishal Jain, Mukesh Sharma. Research Journal of Pharmacy and Technology 2023; 16(10):4791-8. doi: 10.52711/0974-360X.2023.00777

Kushagra Nagori, Madhulika Pradhan, Kartik T. Nakhate, Hemant R. Badwaik, Reena Deshmukh, Ayushmaan Roy, Rashnita Sharma, Shobhit P. Srivastava, Sonia Chawla, Vishal Jain, Mukesh Sharma. Research Journal of Pharmacy and Technology 2023; 16(10):4791-8. doi: 10.52711/0974-360X.2023.00777   Available on:

1.    World Health Organization. Transmission of SARS-CoV-2: implications for infection prevention precautions. Scientific Brief. 9 July 2020.
2.    Esposito S, Noviello S, Pagliano P. Update on treatment of COVID-19: ongoing studies between promising and disappointing results. Infez Med. 2020; 28(2): 198-211.
3.    Augustin JM, Kuzina V, Andersen SB, Bak S. Molecular activities, biosynthesis and evolution of triterpenoid saponins. Phytochemistry. 2011;72(6):435-457.
4.    Shaghaghi N. Molecular docking study of novel COVID-19 protease with low risk terpenoids compounds of plants.                                                                                from: ChemRxiv.
5.    González MA, Guaita DP, Royero JC, Zapata B, Agudelo L, Arango AM, Galvis LB. Synthesis and biological evaluation of dehydroabietic acid derivatives. Eur J Med Chem. 2010;45(2):811-6. doi: 10.1016/j.ejmech.2009.10.010.
6.    Huang J, Su D, Feng Y, Liu K, Song Y. Antiviral Herbs - Present and Future. Infectious Disorders – Drug Targets. 2014;14:61-73.
7.    Calderon-Montano J.M, Burgos-Moron E, Perez-Guerrero C, Lopez-Lazaro M. A Review on the Dietary Flavonoid Kaempferol. Mini-Reviews in Medicinal Chemistry. 2011;11:298-344.
8.    Aboubakr HA, Nauertz A, Luong NT, Agrawal S, El-sohaimy SAA, Youssef MM;  Goyal SM, In vitro Antiviral Activity of Clove and Ginger Aqueous Extracts against Feline Calicivirus, a Surrogate for Human Noroviru. J Food Prot. 2016;79(6):1001–1012.  doi:10.4315/0362-028X.JFP-15-593.
9.    Bajpai VK, Kim NA, Kim K, Kang SC. Antiviral potential of a diterpenoid compound sugiol from Metasequoia glyptostroboides. Pak. J. Pharm. Sci. 2016;29(3):1077-1080.
10.    Naithani R, Huma L.C, Holland L.E, Shukla D, McCormick D.L, Mehta R.G, Moriarty R.M. Antiviral Activity of Phytochemicals: A Comprehensive Review. Mini-Reviews in Medicinal Chemistry. 2008;8:1106-1133.
11.    Brand YM, Roa-Linares VC, Betancur-Galvis LA, Durán-García DC, Stashenko E. Antiviral activity of Colombian Labiatae and Verbenaceae family essential oils and monoterpenes on Human Herpes viruses. Journal of Essential Oil Research.  2016;28(2):130-137.
12.    Salehi B, Upadhyay S,  Orhan IE, Jugran AK, Sumali LD, Jayaweera,  A. Dias D, Sharopov F, Taheri Y, Martins N, Baghalpour N,  C. Cho W, Sharifi-Rad J, Therapeutic Potential of α- and β-Pinene: A Miracle Gift of Nature. Biomolecules. 2019;9(11):738.
13.    Choi HJ, Chemical Constituents of Essential Oils Possessing Anti-Influenza A/WS/33 Virus Activity. Osong Public Health Res Perspect. 2018;9(6):348–353.  doi: 10.24171/j.phrp.2018.9.6.09  
14.    Swarup V, Ghosh J,  Ghosh S, Saxena A, Basu A,  Antiviral and Anti-Inflammatory Effects of Rosmarinic Acid in an Experimental Murine Model of Japanese Encephalitis, Antimicrob Agents Chemother. 2007;51(9):3367–3370. doi: 10.1128/AAC.00041-07
15.    Roa-Linares VC, Brand YM, Gomez LSA, Castaño VT, Betancur-Galvis LA,  Gallego-Gomez JC, González MA. Anti-herpetic and anti-dengue activity of abietane ferruginol analogues synthesized from (+)-dehydroabietylamine. Eur J Med Chem. 2016;108:79-88. doi: 10.1016/j.ejmech.2015.11.009.
16.    Paduch R, Kandefer-Szerszen M. Antitumor and Antiviral Activity of Pentacyclic Triterpenes. Mini-Reviews in Organic Chemistry. 2014;11:262-268.
17.    Anand K, Ziebuhr J, Wadhwani P, Mesters JR, Hilgenfeld R. Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs. Science. 2003; 300: 1763–7. doi: 10.1126/science.1085658.
18.    Ul Qamar MT, Alqahtani SM, Alamri MA, Chen LL. Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. J Pharm Anal. 2020. doi:10.1016/j.jpha.2020.03.009
19.    Khan SA, Zia K, Ashraf S, Uddin R, Ul-Haq Z. Identification of chymotrypsin-like protease inhibitors of SARS-CoV-2 via integrated computational approach. J Biomol Struct Dyn. 2020. doi: 10.1080/07391102.2020.1751298.
20.    Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, Shi Z, Hu Z, Zhong W, Xiao G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020;30(3):269-271.
21.    Pandey P, Rane JS, Chatterjee A, Kumar A, Khan R, Prakash A, Ray S. Targeting SARS-CoV-2 spike protein of COVID-19 with naturally occurring phytochemicals: an in-silico study for drug development. J Biomol Struct Dyn. 2020. doi: 10.1080/07391102.2020.1796811.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

56th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Recent Articles


Not Available