Author(s):
Lim Khian Giap, Rajavel Varatharajan, Arunachalam Muthuraman
Email(s):
arunachalammu@gmail.com
DOI:
10.52711/0974-360X.2023.00097
Address:
Lim Khian Giap1, Rajavel Varatharajan2, Arunachalam Muthuraman3*
1PhD research scholar, Faculty of Pharmacy, AIMST University, Malaysia.
2Associate professor, Faculty of Pharmacy, AIMST University, Malaysia.
3Senior lecturer, Faculty of Pharmacy, AIMST University, Malaysia.
*Corresponding Author
Published In:
Volume - 16,
Issue - 2,
Year - 2023
ABSTRACT:
Vascular dementia (VaD) is a major factor for the progress of stroke and other memory disorders. It is the second leading cause of death. The burden of VaD is higher in the aged population (>65 years). The progression of VaD occurs with lifestyle modifications i.e., fast food, smoking, and alcohol. The medicines for the treatment of VaD are limited. The palm oil is one of the rich sources of beta-carotene (BC). The present research designed to investigate the potential role of palm oil mill effluent derived BC in experimental model of diabetic VaD. The diabetic VaD was induced by administration of nicotinamide (NA, 50 mg/kg; i.p.) followed by streptozotocin (STZ, 50 mg/kg; i.p.). The test compound i.e., BC (50 and 100 mg/kg) and reference compound donepezil (1 mg/kg) were administered orally for 15 consecutive days. The changes of cognitive patterns i.e., escape latency time (ELT) and time spent in target quadrant (TSTQ) was assessed by Morris water maze (MWM) test. Besides the changes of neurotransmitter i.e., acetylcholinesterase (AChE) was estimated in brain (hippocampus, cerebellum, entorhinal cortex, amygdala and septum) samples. The administration of STZ caused the significant changes of cognitive functions (increased ELT and decreased TSTQ) as indicated in the development of VaD when compared to normal group. The treatment of BC was ameliorated the cognitive dysfunctions against the STZ associated cholinergic neurotransmitter (elevated AChE) changes. The effects were similar to donepezil treatment group. Hence, it proved that BC possesses the potential therapeutic effects in the management of diabetic VaD due to its potential anti-cholinergic effects.
Cite this article:
Lim Khian Giap, Rajavel Varatharajan, Arunachalam Muthuraman. Therapeutic investigations of palm oil induced beta-carotene in diabetic vascular dementia in rat. Research Journal of Pharmacy and Technology 2023; 16(2):566-2. doi: 10.52711/0974-360X.2023.00097
Cite(Electronic):
Lim Khian Giap, Rajavel Varatharajan, Arunachalam Muthuraman. Therapeutic investigations of palm oil induced beta-carotene in diabetic vascular dementia in rat. Research Journal of Pharmacy and Technology 2023; 16(2):566-2. doi: 10.52711/0974-360X.2023.00097 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2023-16-2-16
REFERENCES:
1. Wolters FJ, Ikram MA. Epidemiology of Vascular Dementia: Nosology in a Time of Epiomics. ATVB. 2019;39(8):1542-1549. doi:10.1161/ATVBAHA.119.311908
2. Hoque M, Ramanjaneyulu J, Babu DV, Islam M, Swamy VBN. Studies on Memory Enhancing Property of Sumenta - A Polymherbal Formulation in Experimentally Induced Alzhiemers Disease in Experimental Animals. Rese Jour Pharmacol and Pharmacod. 2015;7(2):61. doi:10.5958/2321-5836.2015.00013.0
3. Deore ND, Gupta S, Shrivastav B, Upasni CD, Apte KG, Shaikh AM. Evidence based Evaluation of Antidiabetic Potential of Yesaka on Streptozotocin Diabetic Rats. Rese Jour of Pharm and Technol. 2018;11(11):4965. doi:10.5958/0974-360X.2018.00904.6
4. Devi MRC, Ramesh B. Hypoglycemic activity of Leaves of Bougainvillea spectabilis extract in Streptozotocin-Induced Diabetic Rats. Asian Jour Pharmac Rese. 2018;8(2):99. doi:10.5958/2231-5691.2018.00017.5
5. Jacobson DA, Shyng SL. Ion Channels of the Islets in Type 2 Diabetes. Journal of Molecular Biology. 2020;432(5):1326-1346. doi:10.1016/j.jmb.2019.08.014
6. Venkat P, Chopp M, Chen J. Models and mechanisms of vascular dementia. Experimental Neurology. 2015;272:97-108. doi:10.1016/j.expneurol.2015.05.006
7. Lyu F, Wu D, Wei C, Wu A. Vascular cognitive impairment and dementia in type 2 diabetes mellitus: An overview. Life Sciences. 2020;254:117771. doi:10.1016/j.lfs.2020.117771
8. Romay MC, Toro C, Iruela-Arispe ML. Emerging molecular mechanisms of vascular dementia: Current Opinion in Hematology. 2019;26(3):199-206. doi:10.1097/MOH.0000000000000502
9. Patel BD, Kori ML. Antidiabetic Effect of Ammania baccifera Linn leaf on Streptozotocin Induced Diabetes in Male Albino Wistar Rats. Rese Jour of Pharm and Technol. 2018;11(11):4773. doi:10.5958/0974-360X.2018.00869.7
10. Tripathi S, Saroj BK, Khan MY. Pharmacological Evaluation of Folk Medicinally used Plant by usin Streptozotocin Induced Rat Models. Asian Jour Pharm and Technol. 2018;8(4):231. doi:10.5958/2231-5713.2018.00036.3
11. Voora V, Larrea C, Bermudez S, Baliño S. Global Market Report: Palm Oil. International Institute of Sustainable Development. Published online 2019:16.
12. Poh PE, Wu TY, Lam WH, Poon WC, Lim CS. Waste Management in the Palm Oil Industry: Plantation and Milling Processes. Springer International Publishing; 2020. doi:10.1007/978-3-030-39550-6
13. Ng MH, Choo YM. Improved Method for the Qualitative Analyses of Palm Oil Carotenes Using UPLC. J Chromatogr Sci. 2016;54(4):633-638. doi:10.1093/chromsci/bmv241
14. Sampaio KA, Ayala JV, Van Hoed V, et al. Impact of Crude Oil Quality on the Refining Conditions and Composition of Nutraceuticals in Refined Palm Oil. Journal of Food Science. 2017;82(8):1842-1850. doi:10.1111/1750-3841.13805
15. Bahonar A, Saadatnia M, Khorvash F, Maracy M, Khosravi A. Carotenoids as potential antioxidant agents in stroke prevention: A systematic review. Int J Prev Med. 2017;8(1):70. doi:10.4103/ijpvm.IJPVM_112_17
16. Hasanudin U, Sugiharto R, Haryanto A, Setiadi T, Fujie K. Palm oil mill effluent treatment and utilization to ensure the sustainability of palm oil industries. Water Science and Technology. 2015;72(7):1089-1095. doi:10.2166/wst.2015.311
17. Davinelli S, Ali S, Solfrizzi V, Scapagnini G, Corbi G. Carotenoids and Cognitive Outcomes: A Meta-Analysis of Randomized Intervention Trials. Antioxidants. 2021;10(2):223. doi:10.3390/antiox10020223
18. Wenten IG, Khoiruddin K, Aryanti PTP, Victoria AV, Tanukusuma G. Membrane-based zero-sludge palm oil mill plant. Reviews in Chemical Engineering. 2020;36(2):237-263. doi:10.1515/revce-2017-0117
19. Masiello P, Broca C, Gross R, et al. Experimental NIDDM: Development of a New Model in Adult Rats Administered Streptozotocin and Nicotinamide. Diabetes. 1998;47(2):224-229. doi:10.2337/diab.47.2.224
20. Ghasemi A, Khalifi S, Jedi S. Streptozotocin-nicotinamide-induced rat model of type 2 diabetes (review). Acta Physiologica Hungarica. 2014;101(4):408-420. doi:10.1556/APhysiol.101.2014.4.2
21. Furman BL. Streptozotocin‐Induced Diabetic Models in Mice and Rats. Current Protocols in Pharmacology. 2015;70(1). doi:10.1002/0471141755.ph0547s70
22. Rakesh P, Panyala SR, Siddig M, Ramadas C, Kumar KS, Sekar DS. A comparative Study on the Antidiabetic Effect of Nelumbo nucifera and Glimepiride in Streptozotocin Induced Diabetic Rats. :3.
23. Reddy NS, Vidyasabbani, Pravanthi B, Laxmi BV, Harika B. Evaluation of Antidiabetic Activity of Rumex vesicarius in Streptozotocin Induced Diabetic Albino Rats. Rese Jour Pharmacol and Pharmacod. 2016;8(3):123. doi:10.5958/2321-5836.2016.00023.9
24. Badavi M, Gharib Naseri MK, Pirmoradi L, Hosseini F. Beta Carotene Modulates Nitric Oxide Production in the Renal Ischemia/Reperfusion Injury in Rat. Zahedan J Res Med Sci. 2017;19(3). doi:10.5812/zjrms.7662
25. Hosseini F, Naseri MKG, Badavi M, Ghaffari MA, Shahbazian H, Rashidi I. Effect of beta carotene on lipid peroxidation and antioxidant status following renal ischemia/reperfusion injury in rat. Scandinavian Journal of Clinical and Laboratory Investigation. 2010;70(4):259-263. doi:10.3109/00365511003777810
26. WHO IPOCS. Toxicological evaluation of some food colours, enzymes, flavour enhancers, thickening agents, and certain food additives. Published 1975. Accessed July 13, 2021. http://www.inchem.org/documents/jecfa/jecmono/v06je15.htm
27. Sneha Bagle, Suraj Muke, Sagar Saha, Shankarnarayanan Jayakodi, Arunkanth Krishnakumar, Sadhana Sathaye. Evaluation of novel and superior formulation CaroTexTM developed by Biofusion Technology. ijrps. 2019;10(3):1868-1873. doi:10.26452/ijrps.v10i3.1385
28. Wang H, Lu J, Gao W, et al. Donepezil down‐regulates propionylation, 2‐hydroxyisobutyrylation, butyrylation, succinylation, and crotonylation in the brain of bilateral common carotid artery occlusion‐induced vascular dementia rats. Clin Exp Pharmacol Physiol. Published online June 13, 2020:1440-1681.13352. doi:10.1111/1440-1681.13352
29. Chiu K, Lau WM, Lau HT, So KF, Chang RCC. Micro-dissection of Rat Brain for RNA or Protein Extraction from Specific Brain Region. JoVE. 2007;(7):269. doi:10.3791/269
30. Jia M, Meng F, Smerin SE, et al. Biomarkers in an Animal Model for Revealing Neural, Hematologic, and Behavioral Correlates of PTSD. JoVE. 2012;(68):3361. doi:10.3791/3361
31. Mayer J, Hamel MG, Gottschall PE. Evidence for proteolytic cleavage of brevican by the ADAMTSs in the dentate gyrus after excitotoxic lesion of the mouse entorhinal cortex. BMC Neurosci. 2005;6(1):52. doi:10.1186/1471-2202-6-52
32. Sheehan TP, Chambers RA, Russell DS. Regulation of affect by the lateral septum: implications for neuropsychiatry. Brain Research Reviews. 2004;46(1):71-117. doi:10.1016/j.brainresrev.2004.04.009
33. Spijker S. Dissection of Rodent Brain Regions. In: Li KW, ed. Neuroproteomics. Vol 57. Neuromethods. Humana Press; 2011:13-26. doi:10.1007/978-1-61779-111-6_2
34. Bhatia P, Singh N. Tadalafil ameliorates memory deficits, oxidative stress, endothelial dysfunction and neuropathological changes in rat model of hyperhomocysteinemia induced vascular dementia. International Journal of Neuroscience. Published online September 11, 2020:1-13. doi:10.1080/00207454.2020.1817009
35. Morris R. Developments of a water-maze procedure for studying spatial learning in the rat. Journal of Neuroscience Methods. 1984;11(1):47-60. doi:10.1016/0165-0270(84)90007-4
36. Singh M, Prakash A. Possible role of endothelin receptor against hyperhomocysteinemia and β-amyloid induced AD type of vascular dementia in rats. Brain Research Bulletin. 2017;133:31-41. doi:10.1016/j.brainresbull.2017.02.012
37. Ellman GL, Courtney KD, Andres V, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology. 1961;7(2):88-95. doi:10.1016/0006-2952(61)90145-9
38. Gorelick PB, Counts SE, Nyenhuis D. Vascular cognitive impairment and dementia. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 2016;1862(5):860-868. doi:10.1016/j.bbadis.2015.12.015
39. Hanyu H. Diabetes-Related Dementia. In: Nakabeppu Y, Ninomiya T, eds. Diabetes Mellitus. Vol 1128. Advances in Experimental Medicine and Biology. Springer Singapore; 2019:147-160. doi:10.1007/978-981-13-3540-2_8
40. Biessels GJ, Despa F. Cognitive decline and dementia in diabetes mellitus: mechanisms and clinical implications. Nat Rev Endocrinol. 2018;14(10):591-604. doi:10.1038/s41574-018-0048-7
41. Sampoornam W, Kuriakose BV. Effectiveness of Visual Images Mnemonic Training on Memory among Alzheimer’s Disease Patients at Alzheimer’s and related Disorders society of India, Cochin, Kerala. Inter Jour of Adva in Nur Manag. 2019;7(2):95. doi:10.5958/2454-2652.2019.00024.6
42. Rao UM. Phenyl Propanoid Glycoside, An Eleutheroside derivative in the Regulation Carbohydrate Metabolism in Hepatic Tissues in T2DM experimental Rats. Rese Jour of Pharm and Technol. 2019;12(1):283. doi:10.5958/0974-360X.2019.00053.2
43. Murphy MP, Corriveau RA, Wilcock DM. Vascular contributions to cognitive impairment and dementia (VCID). Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 2016;1862(5):857-859. doi:10.1016/j.bbadis.2016.02.010
44. Jellinger KA. Pathology and pathogenesis of vascular cognitive impairment—a critical update. Front Aging Neurosci. 2013;5. doi:10.3389/fnagi.2013.00017
45. Wang J, Zhang H yan, Tang X can. Cholinergic deficiency involved in vascular dementia: possible mechanism and strategy of treatment. Acta Pharmacol Sin. 2009;30(7):879-888. doi:10.1038/aps.2009.82
46. Pessoa L. Emotion and cognition and the amygdala: from “what is it?” to “what’s to be done?” Neuropsychologia. 2010;48(12):3416-3429. doi:10.1016/j.neuropsychologia.2010.06.038
47. Khakpai F, Zarrindast MR, Nasehi M, Haeri-Rohani A, Eidi A. The role of glutamatergic pathway between septum and hippocampus in the memory formation. EXCLI J. 2013;12:41-51.
48. Howett D, Castegnaro A, Krzywicka K, et al. Differentiation of mild cognitive impairment using an entorhinal cortex-based test of virtual reality navigation. Brain. 2019;142(6):1751-1766. doi:10.1093/brain/awz116
49. Schmahmann JD. The cerebellum and cognition. Neuroscience Letters. 2019;688:62-75. doi:10.1016/j.neulet.2018.07.005
50. Zhou T, Liu HJ, Xu P. Effect of beta-carotene on learning, memory and expression of caspase-3 and phosphorylated tau in hippocampus of rats with obstructive sleep apnea syndrome. Journal of Clinical Neurology. Published online 2019:50-53.
51. Wang M, Deng X, Xie Y, Chen Y. Astaxanthin Attenuates Neuroinflammation in Status Epilepticus Rats by Regulating the ATP-P2X7R Signal. DDDT. 2020;Volume 14:1651-1662. doi:10.2147/DDDT.S249162
52. Ahmadi M, Rajaei Z, Hadjzadeh MA, Nemati H, Hosseini M. Crocin improves spatial learning and memory deficits in the Morris water maze via attenuating cortical oxidative damage in diabetic rats. Neuroscience Letters. 2017;642:1-6. doi:10.1016/j.neulet.2017.01.049
53. Islam M, Ramanjaneyulu J, Babu DV, Hoque M, Swamy VBN. Studies on Memory Enhancing Property of Bravobol-A Polyherbal Formulation in Experimentally Induced Alzheimers Disease in Experimental Animals. Asia Journ of Resear in Pharmac Scie. 2015;5(2):103. doi:10.5958/2231-5659.2015.00017.X
54. Hira S, Saleem U, Anwar F, Sohail MF, Raza Z, Ahmad B. β-Carotene: A Natural Compound Improves Cognitive Impairment and Oxidative Stress in a Mouse Model of Streptozotocin-Induced Alzheimer’s Disease. Biomolecules. 2019;9(9):441. doi:10.3390/biom9090441
55. Rocha F, Yumi Sugahara L, Leimann FV, et al. Nanodispersions of beta-carotene: effects on antioxidant enzymes and cytotoxic properties. Food Funct. 2018;9(7):3698-3706. doi:10.1039/C8FO00804C