Author(s): Fransisca Shinta Maharini, Maria Amridjati, Sandeep Poddar


DOI: 10.52711/0974-360X.2023.00105   

Address: Fransisca Shinta Maharini1*, Maria Amridjati1, Sandeep Poddar2
1Panti Rapih Institute of Health Science, Tantular 401 Street, Pringwulung, Condongcatur, Depok, Sleman, Yogyakarta, Indonesia.
2Deputy Vice Chancellor (Research & Innovation), Lincoln University College, Wisma Lincoln, No, 12-18, Jalan SS 6/12, 47301 Petaling Jaya, Selangor D. E., Malaysia.
*Corresponding Author

Published In:   Volume - 16,      Issue - 2,     Year - 2023

One of the Indonesian traditional food, growol is a fermented cassava product of the home industries. It is believed that growol can cure diseases in the digestive tract. This research aims to analyze the standardization of growol processing and the effects of various processing processes, i.e. steaming, baking, frying, and cooling, on growol potential as traditional food. Four variations of fermentation treatments were used to investigate the standardization of growol processing, namely the fermentation process. Based on the organoleptic test encompassing appearance, texture, taste, and overall preference and the LAB level test, the best growol was that with the fermentation process “not changing the water in three days” (TG3). As such, we figured out the standardization of growol processing comprising preparing the basic ingredients, performing the fermentation “not changing the soaking water in three days”, washing five times (b/v) draining, crushing, steaming, and molding. The glycemic index of baked, steamed, cooled, without-processing, and fried growol was 97, 94, 93, 91, and 89, respectively. With a GI > 70, without processing, steamed, baked, fried, and cooled growol could not be consumed as functional pro-diabetic food. The LAB test indicated that the LAB level of without- processing, baked, fried, steamed, and cooled growl was 1.32 × 107 cfu/g, 6.7 × 103 cfu/g, 1.53 × 103 cfu/g, 1.27 × 103 cfu/g, and 2.7 ×102 cfu/g, respectively. We could then infer that without processing growol and steamed, baked, fried, or cooled growol had potential as a functional prebiotic food.

Cite this article:
Fransisca Shinta Maharini, Maria Amridjati, Sandeep Poddar. Standardization of Growol processing and the effect of different processing processes on the potential of Growol as functional food. Research Journal of Pharmacy and Technology 2023; 16(2):615-0. doi: 10.52711/0974-360X.2023.00105

Fransisca Shinta Maharini, Maria Amridjati, Sandeep Poddar. Standardization of Growol processing and the effect of different processing processes on the potential of Growol as functional food. Research Journal of Pharmacy and Technology 2023; 16(2):615-0. doi: 10.52711/0974-360X.2023.00105   Available on:

1.    Hemalatha S. Machineni RM. Specific determination of amylase activity in crude extracts from fermented cassava (Manihot esculenta) tubers. Research Journal of Science and Technology. 2011 28;3(4):192-6. Available on:
2.    Petrova P. Petrov K. Stoyancheva G. Starch‐modifying enzymes of lactic acid bacteria–structures, properties, and applications. Starch‐stärke. 2013 Jan;65(1‐2):34-47. DOI: 10.1002/star.201200192
3.    Khare P. Kishore K. Sharma DK. Catalase and Superoxide Dismutase (SOD) activity in Swiss albino mice treated with ethanolic leaf extract of Madhuca longifolia. Research Journal of Pharmacy and Technology. 2019;12(9):4434-7. DOI : 10.5958/0974-360X.2019.00764.9
4.    Khare P. Kishore K. Sharma DK. Catalase and Superoxide Dismutase (SOD) activity in Swiss Albino mice treated with Ethanolic leaf extract of Bauhinia variegata. Research Journal of Pharmacy and Technology. 2019;12(9):4259-62. DOI : 10.5958/0974-360X.2019.00732.7
5.    Pot B and Ludwig W (n.d.) Schleifer KK. Taxonomy of lactic acid bacteria. De Vuyst, L. dan E. J. Vandamme. Bacteriocins of lactic acid bacteria: microbiology, genetic and application. London: Blackie Academic & Professional. 1994.
6.    Indira M. Venkateswarulu TC. Chakravarthy K. Reddy AR. Prabhakar KV. Isolation and characterization of bacteriocin producing lactic acid bacteria from diary effluent. Research Journal of Pharmacy and Technology. 2015;8(11):1560-5. DOI: 10.5958/0974-360X.2015.00278.4
7.    Singh S. Das S. Evaluation of Market Curd for Sanitary Quality and Bacteriocin-Producing Lactic acid Bacteria for Potential Application as a Natural, Healthy Food Preservative. Research Journal of Pharmacy and Technology. 2017;10(4):1029-33. DOI: 10.5958/0974-360X.2017.00186.X
8.    Hossain MK. Nahar K. Shokryazdan P. Abdullah N. Hamid K. Jahromi MF. Probiotic Potential of Lactic Acid Bacteria Isolated from Cheese, Yogurt and Poultry Faeces. Research Journal of Pharmacy and Technology. 2017;10(9):2991-8. DOI: 10.5958/0974-360X.2017.00530.3
9.    Al-Hulu SM. Antibacterial activity for Bacteriocin produced by Lactic acid bacteria against Clinical Bacterial Isolates. Research Journal of Pharmacy and Technology. 2019;12(9):4205-8. DOI : 10.5958/0974-360X.2019.00723.6
10.    Sivaraj A. Kumar V. Kalyanasundaram R. Kasivelu G. Biogenic production of Gold nanoparticles using Lactic acid bacteria and their Anti-mycobacterial activity. Research Journal of Pharmacy and Technology. 2020 Sep 1;13(9):4391-4. DOI: 10.5958/0974-360X.2020.00776.3
11.    Thu TT. Vinh DT. Dung NA. Tu NH. Effect of Lactic Acid produced by Lactic acid bacteria on Prodigiosin production from Streptomyces coelicolor. Research Journal of Pharmacy and Technology. 2021 Apr 1;14(4):1953-6. DOI: 10.52711/0974-360X.2021.00345
12.    Suman Kumari. Vinita Gupta. Sanchita Singh. Y. K. Gupta. Synthesis, Characterization and Antimicrobial Activities of Five and Six Member Cyclic Imides Derivatives. Research J. Science and Tech. 2019; 11(1):82-86. DOI: 10.5958/2349-2988.2019.00013.5
13.    El-Aidie SA. A review on chitosan: Ecofriendly multiple potential applications in the food industry. International Journal of Advancement in Life Sciences Research. 2018 Jan 29:1-4. DOI:10.31632/ijalsr.2018v01i01.001
14.    Rizal S, Erna M. Nurainy F. Tambunan AR. Probiotic characteristic of lactic fermentation beverage of pineapple juice with variation of lactic acid bacteria (LAB) types. Indonesian Journal of Applied Chemistry. 2016 Jun 10;18(01):106411. DOI: 10.14203/jkti.v18i01.41
15.    Oak SJ. Jha R. The effects of probiotics in lactose intolerance: A systematic review. Critical reviews in food science and nutrition. 2019 Jun 17;59(11):1675-83.
16.    Eni R. Lestari LA. Juffrie M. Frekuensi konsumsi growol berhubungan dengan angka kejadian diare di Puskesmas Galur II Kecamatan Galur Kabupaten Kulonprogo Provinsi DIY. 2010 7(1): 27–33.
17.    Nurainy F. Rizal S and Suharyono S. Antibacterial activity and evaluation of the effect of synbiotic drink grass jelly extract with the addition of fruit juice. In: 2015 PATPI Seminar Proceedings, Soegijapranata Catholic University. 2015:774–785.
18.    Seveline S. Heldyana R. Kurniawati S. The Use of Three Species of Lactic Acid Bacteria in the Mocaf (Modified Cassava Flour) Production. Industria: Jurnal Teknologi dan Manajemen Agroindustri. 2020 28;9(3):163-72.
19.    Gomez KA. Gomez AA. Statistical procedures for agricultural research Second Edition. Sjamsuddin E, Baharsjah JS, translator. Jakarta (ID): UI pr. Translation from: Statistical Procedures for Agricultural Research. 1995.
20.    Cunniff, Patricia. Official Methods of Analysis of Aoac International. Washington, DC: Association of Official Analytical Chemists, 1995. Print.
21.    Marsono Y. Prospects for the development of functional foods. Journal of Food Technology and Nutrition. 2008 7(1). DOI:
22.    Aloys N. Hui Ming Z. Traditional cassava foods in Burundi—A review. Food reviews international. 2006 Jan 1;22(1):1-27.
23.    Taiwo KA. Utilization potentials of cassava in Nigeria: the domestic and industrial products. Food Reviews International. 2006 1;22(1):29-42.
24.    Kanetro B. Luwihana S. Komposisi proksimat dan kandungan bakteri asam laktat oyek terbaik dari perlakuan penambahan kacang tunggak (Vigna unguiculata) berdasarkan tingkat kesukaannya. Agritech. 2015;35(3):261-5.
25.    Puspaningtyas DE. Sari PM. Kusuma NH. SB DH. Analisis potensi prebiotik growol: kajian berdasarkan perubahan karbohidrat pangan. Gizi Indonesia. 2019 30;42(2):83-90. Doi: 10.36457/gizindo.v42i2.390
26.    Slavin J. Fiber and prebiotics: mechanisms and health benefits. Nutrients. 2013 Apr;5(4):1417-35.
27.    Ogbonna OC, Fadeiye EO. Ikem RT. Blood glucose response on consumption of cassava varieties (Garri) in healthy Nigerian subjects. J Nutr Hum Health. 2018; 2 (1): 22-27 J Nutr Hum Health 2018 Volume 2 Issue. 2018;1. DOI: 10.35841/nutrition-human-health.2.1.22-27
28.    Neuhouser ML. Tinker LF. Thomson C. Caan B. Horn LV. Snetselaar L. Parker LM. Patterson RE. Robinson-O'Brien R. Beresford SA. Shikany JM. Development of a glycemic index database for food frequency questionnaires used in epidemiologic studies. The Journal of nutrition. 2006 1;136(6):1604-9.
29.    Food and Agricultural Organization of the United Nations (FAO/UN), FAO Food and Nutrition paper. Carbohydrate in Human Nutrition, the role of the glycemic index in food choice. 1997. 25-30.
30.    Liu M. Bayjanov JR. Renckens B. Nauta A. Siezen RJ. The proteolytic system of lactic acid bacteria revisited: a genomic comparison. BMC genomics. 2010 ;11(1):1-5.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

56th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Recent Articles


Not Available