Author(s): Subhashini. D, Daniel Alex Anand

Email(s): drdalexanand@gmail.com

DOI: 10.52711/0974-360X.2023.00147   

Address: Subhashini. D, Daniel Alex Anand*
Department of Bioinformatics and The Centre for Molecular Data Science and Systems Biology, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Chennai 600119, Tamil Nadu, India.
*Corresponding Author

Published In:   Volume - 16,      Issue - 2,     Year - 2023


ABSTRACT:
Comorbidity, or co-existing diseases and disorders, often contribute to the patient's overall burden. Psoriasis is a unique example of this. Investigating comorbidities in psoriasis patients is a time-consuming, laborious, and expensive process. To avoid these demerits, it is ideal to detect the possible comorbidities by exploiting the information from datasets deposited in NCBI. Once the comorbidities are identified through bio tools, they can be verified in patients with the required experimental tests. Patients with psoriasis will be able to receive better treatment because of these findings. Hence, in this study, we have utilized the Network Analyst tool to identify the comorbidities associated with psoriasis. We are reporting the protein interaction of fifteen subnetworks, whose GO CC and Reactome pathways were investigated. Notably, subnetwork 2 was involved in xenobiotic metabolism and GABA synthesis. Subnetworks 3, 9, 10, and 13 were associated with the synthesis of sphinganine, galanin, circadian proteins, and urea, respectively. Subnetwork 4 proteins synthesized bile acids and 25-hydroxy cholesterol, whereas subnetworks 7 and 16 produced chemokines, CXCL10 and CXCL1 respectively. The later subnetworks along with subnetwork 9 were involved in G alpha (i) signaling events. Due to the up-regulation of certain proteins in these subnetworks, they cause various types of diseases. The development of comorbidities from these subnetworks is lime lighted.


Cite this article:
Subhashini. D, Daniel Alex Anand. Psoriasis Comorbidities and Shared Disease Mechanisms – An Investigation using Systems Biology approaches. Research Journal of Pharmacy and Technology 2023; 16(2):863-9. doi: 10.52711/0974-360X.2023.00147

Cite(Electronic):
Subhashini. D, Daniel Alex Anand. Psoriasis Comorbidities and Shared Disease Mechanisms – An Investigation using Systems Biology approaches. Research Journal of Pharmacy and Technology 2023; 16(2):863-9. doi: 10.52711/0974-360X.2023.00147   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2023-16-2-66


REFERENCES:
1.    Boehncke WH, Schön MP. Psoriasis. Lancet. 2015 Sep 5; 386(9997): 983-994. doi:10.1016/S0140-6736(14)61909-7.
2.    Sumithra M, Mohamed Majeed A, Chitra V. Cell lines and animal models of psoriasis. Research Journal of Pharmacy and Technology. 2020; 13(3): 1601-1608. doi:10.5958/0974-360X.2020.00290.5.
3.    Wang H, Chen W, He J, Xu W, Liu J. Network analysis of potential risk genes for psoriasis. Hereditas. 2021 Jun 16; 158: 21. doi.org/10.1186/s41065-021-00186-w.
4.    Choudhary S, Anand R, Pradhan D, Bastia B, Kumar SN, Singh H, Puri P, Thomas G, Jain AK. Transcriptomic landscaping of core genes and pathways of mild and severe psoriasis vulgaris. International Journal of Molecular Medicine. 2021; 47(1): 219-231. doi:10.3892/ijmm.2020.4771.
5.    Jensen P, Skov L. Psoriasis and Obesity. Dermatology. 2016; 232(6): 633-639. doi:10.1159/000455840.
6.    Ferreira BI, Abreu JL, Reis JP, Figueiredo AM. Psoriasis and associated psychiatric disorders: A systematic review on etiopathogenesis and clinical correlation. The Journal of Clinical and Aesthetic Dermatology. 2016 Jun 1; 9(6): 36-43.
7.    Chaurasia V, Pal S. Skin diseases prediction: Binary classification machine learning and multi model ensemble techniques. Research Journal of Pharmacy and Technology. 2019; 12(8): 3829-3832. doi:10.5958/0974-360X.2019.00656.5.
8.    Xia J, Benner MJ, Hancock REW. NetworkAnalyst - integrative approaches for protein-protein interaction network analysis and visual exploration. Nucleic Acids Research. 2014 Jul; 42(Web Server issue): W167-W174. doi:10.1093/nar/gku443.
9.    De Las Rivas J, Fontanillo C. Protein-protein interactions essentials: Key concepts to building and analyzing interactome networks. PLOS Computational Biology. 2010 Jun 24; 6(6): e1000807. doi: 10.1371/journal.pcbi.1000807.
10.    Fan P, Lin QH, Guo Y, Zhao LL, Ning H, Liu MY, Wei DQ. The PPI network analysis of mRNA expression profile of uterus from primary dysmenorrheal rats. Scientific Reports. 2018; 8: 351. doi:10.1038/s41598-017-18748-2.
11.    Suárez-Fariñas M, Lowes MA, Zaba LC, Krueger JG. Evaluation of the psoriasis transcriptome across different studies by gene set enrichment analysis (GSEA). PLOS One. 2010 Apr 20; 5(4): e10247. doi:10.1371/journal.pone.0010247.
12.    Gudjonsson JE, Ding J, Johnston A, Tejasvi T, Guzman AM, Nair RP, Voorhees JJ, Abecasis GR, Elder JT. Assessment of the psoriatic transcriptome in a large sample: additional regulated genes and comparisons with in vitro models. Journal of Investigative Dermatology. 2010 Jul; 130(7): 1829-1840. doi:10.1038/jid.2010.36.
13.    Yao Y, Richman L, Morehouse C, Reyes MDL, Higgs BW, Boutrin A, White B, Coyle A, Krueger J, Kiener PA, Jallal B. Type I interferon: potential therapeutic target for psoriasis? PLOS One. 2008 Jul 26; 3(7): e2737. doi:10.1371/journal.pone.0002737.
14.    Zhou X, Krueger JG, Kao MCJ, Lee E, Du F, Menter A, Wong WH, Bowcock AM. Novel mechanisms of T-cell and dendritic cell activation revealed by profiling of psoriasis on the 63,100-element oligonucleotide array. Physiological Genomics. 2003 Mar 18; 13(1): 69-78. doi:10.1152/physiolgenomics.00157.2002.
15.    Subhashini D, Anand DA. Network biology of KEGG enriched viral comorbidities in psoriasis subjects. 3rd International Conference on 2021 Innovations in Power and Advanced Computing Technologies (i-PACT), Vellore, India, 2021 Nov 27-29, pp. 1-6. doi: 10.1109/i-PACT52855.2021.9696642.
16.    Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, Kuhn M, Bork P, Jensen LJ, Mering CV. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Research. 2015 Jan; 43(Database issue): D447-D452. doi:10.1093/nar/gku1003.
17.    Gong L, Zhang CM, Lv JF, Zhou HH, Fan L. Polymorphisms in cytochrome P450 oxidoreductase and its effect on drug metabolism and efficacy. Pharmacogenetics and Genomics. 2017 Sep; 27(9): 337-346. doi:10.1097/FPC.0000000000000297.
18.    Qi G, Han C, Sun Y, Zhou Y. Genetic insight into cytochrome P450 in Chinese from the Chinese Millionome Database. Basic and Clinical Pharmacology and Toxicology. 2020; 126(4): 341-352. doi.org/10.1111/bcpt.13356.
19.    Szpręgiel I, Wrońska D, Kmiecik M, Pałka S, Kania BF. Glutamic acid decarboxylase concentration changes in response to stress and altered availability of glutamic acid in rabbit (Oryctolagus cuniculus) brain limbic structures. Animals (Basel). 2021; 11(2): 455. doi:10.3390/ani11020455.
20.    Tian N, Petersen C, Kash S, Baekkeskov S, Copenhagen D, Nicoll R. The role of the synthetic enzyme GAD65 in the control of neuronal gamma-aminobutyric acid release. Proceedings of the National Academy of Sciences of the United States of America. 1999 Oct 26; 96(22): 12911-12916. doi:10.1073/ pnas.96.22.12911.
21.    Grone BP. Maruska KP. Three distinct glutamate decarboxylase genes in vertebrates. Scientific Reports. 2016 Jul 27; 6: 30507. doi: 10.1038/srep30507.
22.    Hannun YA. Obeid LM. Sphingolipids and their metabolism in physiology and disease. Nature Reviews Molecular Cell Biology. 2018; 19(3): 175-191. doi: 10.1038/nrm.2017.107.
23.    Wang Y, Niu Y, Zhang Z, Gable K, Gupta SD, Somashekarappa N, Han G, Zhao H, Myasnikov AG, Kalathur RC, Dunn TM, Lee CH. Structural insights into the regulation of human serine palmitoyltransferase complexes. Nature Structural and Molecular Biology. 2021; 28(3): 240-248. doi:10.1038/s41594-020-00551-9.
24.    Merrill AH. Sphingolipid biosynthesis. Encyclopedia of Biological Chemistry, Edited by Lennarz WJ and Lane MD, Academic Press, Elsevier Inc., 2013; 2nd ed, pp. 281-286. doi.org/10.1016/B978-0-12-378630-2.00515-6.
25.    Genin MJ, Gonzalez Valcarcel IC, Holloway WG, Lamar J, Mosior M, Hawkins E, Estridge T, Weidner J, Seng T, Yurek D, Adams LA, Weller J, Reynolds VL, Brozinick JT. Imidazopyridine and pyrazolopiperidine derivatives as novel inhibitors of serine palmitoyltransferase. Journal of Medicinal Chemistry. 2016 Jun 06; 59(12): 5904-5910. doi.org/10.1021/ acs.jmedchem.5b01851.
26.    Muthusamy T, Cordes T, Handzlik MK, You L, Lim EW, Gengatharan J, Pinto AFM, Badur MG, Kolar MJ, Wallace M, Saghatelian A, Metallo CM. Serine restriction alters sphingolipid diversity to constrain tumor growth. Nature. 2020 Aug 12; 586(7831): 790-795. doi:10.1038/s41586-020-2609-x.
27.    Pandak WM, Hylemon PB, Ren S, Marques D, Gil G, Redford K, Mallonee D, Vlahcevic ZR. Regulation of oxysterol 7α-hydroxylase (CYP7B1) in primary cultures of rat hepatocytes. Hepatology. 2002; 35(6): 1400-1408. doi:10.1053/ jhep.2002.33200.
28.    Hajeyah AA, Griffiths WJ, Wang Y, Finch AJ, O'Donnell VB. The biosynthesis of enzymatically oxidized lipids. Frontiers in Endocrinology (Lausanne). 2020; 11: 591819. doi:10.3389/ fendo.2020.591819.
29.    Liu SY, Aliyari R, Chikere K, Li G, Marsden MD, Smith JK, Pernet O, Guo H, Nusbaum R, Zack JA, Freiberg AN, Su L, Lee B, Cheng G. Interferon-inducible cholesterol-25-hydroxylase broadly inhibits viral entry by production of 25-hydroxycholesterol. Immunity. 2013 Jan 24; 38(1): 92-105. doi.org/10.1016/j.immuni.2012.11.005.
30.    Cyster JG, Dang EV, Reboldi A, Yi T. 25 Hydroxycholesterols in innate and adaptive immunity. Nature Reviews Immunology. 2014 Nov; 14(11): 731-743. doi: 10.1038/nri3755.
31.    Sheng N, Ma Z, Zhou Y, Xu J, Gao Y, Fu XY. Cholesterol 25-hydroxylase protects against experimental colitis in mice by modulating epithelial gut barrier function. Scientific Reports. 2020 Aug 28; 10(1): 14246. doi.org/10.1038/s41598-020-71198-1.
32.    Li X, Zhang L, Shi X, Liao T, Zhang N, Gao Y, Xing R, Wang P. MicroRNA-10a-3p improves cartilage degeneration by regulating CH25H-CYP7B1-RORα mediated cholesterol metabolism in knee osteoarthritis rats. Frontiers in Pharmacology. 2021 Jun 3; 12: 690181. doi:10.3389/fphar.2021.690181.
33.    Cabrero-de Las Heras S, Martínez-Balibrea E. CXC family of chemokines as prognostic or predictive biomarkers and possible drug targets in colorectal cancer. World Journal of Gastroenterology. 2018 Nov 14; 24(42): 4738-4749. doi:10.3748/ wjg.v24.i42.4738.
34.    Chen X, Chen R, Jin R, Huang Z. The role of CXCL chemokine family in the development and progression of gastric cancer. International Journal of Clinical and Experimental Pathology. 2020 Mar 1; 13(3): 484-492. PMC7137023.
35.    Bocheńska K, Moskot M, Gabig-Cimińska M. Use of cytokine mix-, imiquimod-, and serum-induced monoculture and lipopolysaccharide- and interferon gamma-treated co-culture to establish in vitro psoriasis-like inflammation models. Cells. 2021 Nov 2; 10(11): 2985. doi.org/10.3390/cells10112985.
36.    Kofler B, Berger A, Santic R, Moritz K, Almer D, Tuechler C, Lang R, Emberger M, Klausegger A, Sperl W, Bauer JW. Expression of neuropeptide galanin and galanin receptors in human skin. Journal of Investigative Dermatology. 2004 Apr; 122(4): 1050-1053. doi: 10.1111/j.0022-202X.2004.22418.x.
37.    Gopalakrishnan L, Chatterjee O, Raj C, Pullimamidi D, Advani J, Mahadevan A, Keshava Prasad TS. An assembly of galanin–galanin receptor signaling network. Journal of Cell Communication and Signaling. 2021 Jun; 15(2): 269-275. doi.org/ 10.1007/s12079-020-00590-3.
38.    DeBruyne JP, Weaver DR, Reppert SM. CLOCK and NPAS2 have overlapping roles in the suprachiasmatic circadian clock. Nature Neuroscience. 2007 May; 10(5): 543-545. doi:10.1038/ nn1884.
39.    Olkkonen J, Kouri VP, Kuusela E, Ainola M, Nordström D, Eklund KK, Mandelin J. DEC2 blocks the effect of the ARNTL2/NPAS2 dimer on the expression of PER3 and DBP. Journal of Circadian Rhythms. 2017 Aug 11; 15(1): 6,1-10. doi.org/10.5334/jcr.149.
40.    Grzywa TM, Sosnowska A, Matryba P, Rydzynska Z, Jasinski M, Nowis D, Golab J. Myeloid cell-derived arginase in cancer immune response. Frontiers in Immunology. 2020 May 15; 11: 938. doi:10.3389/fimmu.2020.00938.
41.    Bruch-Gerharz D, Schnorr O, Suschek C, Beck KF, Pfeilschifter J, Ruzicka T, Kolb-Bachofen V. Arginase 1 overexpression in psoriasis: limitation of inducible nitric oxide synthase activity as a molecular mechanism for keratinocyte hyperproliferation. The American Journal of Pathology. 2003 Jan; 162(1): 203-211. doi: 10.1016/S0002-9440(10)63811-4.
42.    Couchet M, Breuillard C, Corne C, Rendu J, Morio B, Schlattner U, Moinard C. Ornithine transcarbamylase – From structure to metabolism: An update. Frontiers in Physiology. 2021 Oct 1; 12: 748249. doi: 10.3389/fphys.2021.748249.
43.    You J, Chen W, Chen J, Zheng Q, Dong J, Zhu Y. The oncogenic role of ARG1 in progression and metastasis of hepatocellular carcinoma. BioMed Research International. 2018 Sep 18; 2018: 2109865. doi:10.1155/2018/2109865.
44.    Harding EC, Ba W, Zahir R, Yu X, Yustos R, Hsieh B, Lignos L, Vyssotski AL, Merkle FT, Constandinou TG, Franks NP, Wisden W. Nitric oxide synthase neurons in the preoptic hypothalamus are NREM and REM sleep-active and lower body temperature. Frontiers in Neuroscience. 2021 Oct 14; 15: 709825. doi:10.3389/ fnins.2021.709825.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available