Author(s): Shubham Sharma, Sameena Mehtab, Minakshi Pandey, MGH Zaidi, Shristi Rawat

Email(s): smiitr@gmail.com

DOI: 10.52711/0974-360X.2023.00162   

Address: Shubham Sharma, Sameena Mehtab*, Minakshi Pandey, MGH Zaidi, Shristi Rawat
Department of Chemistry, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar Uttarakhand, India.
*Corresponding Author

Published In:   Volume - 16,      Issue - 2,     Year - 2023


ABSTRACT:
India is the nation with international boarder wherein a huge number of soldiers are deployed. Fungal infections are a common complaints suffered by military personnel at warm, damp or wet environments. Anti-fungal drugs have their application in the treatment of fungal infections. They do so by either killing or controlling the fungi in the host with low toxicity. The Heterocyclic compounds with triazole linkages are known for their effective anticancer and antifungal properties. The sensitive, robust, reproducible quantification of triazole can take place at fast rates without any involvement of multiple steps of sample preparation. This is all possible because of the electrochemical activity of the triazole. There has been a significant increase in Carbon-based nanomaterials being preferred for sensor materials development. The properties of Carbon-based nanomaterials such as inherent electrical conductivity, chemical stability, strong adsorption capacity, and good biocompatibility are what make it preferable. The materials with these properties include an array of carbon compounds such as carbon nanotubes (CNTs), fullerenes, carbon nanofibers, carbon black, etc. CNTs are often counted in the list of important carbonaceous materials and they're also suitable for the fabrication of the electrodes. This is possible because of its high surface area, and good electrical properties. The materials based on CNTs are used to produce sensors that are hybrid in nature, drug delivery, and high-performance composites for plants to identify pathogens. Methods based on high performance liquid and thin layer chromatography, gas chromatography and spectrophotometry involves a series of sample preparations and are executed over costly equipments. Owing to numerous advantages such as rapid response, high performance, cost effective, high sensitivity and selectivity, electrochemical sensors became increasingly promising tool over other conventional analytical methods. Nanohybrid based electrochemical sensor is used for trace level estimation of triazole drugs in pharmaceutical dosage and biological samples.


Cite this article:
Shubham Sharma, Sameena Mehtab, Minakshi Pandey, MGH Zaidi, Shristi Rawat. Electrochemical Sensing of Triazole Drugs based on Carbon Based Nanocomposites: A Review. Research Journal of Pharmacy and Technology 2023; 16(2):969-4. doi: 10.52711/0974-360X.2023.00162

Cite(Electronic):
Shubham Sharma, Sameena Mehtab, Minakshi Pandey, MGH Zaidi, Shristi Rawat. Electrochemical Sensing of Triazole Drugs based on Carbon Based Nanocomposites: A Review. Research Journal of Pharmacy and Technology 2023; 16(2):969-4. doi: 10.52711/0974-360X.2023.00162   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2023-16-2-81


REFERENCES:
1.    Lass-Flörl C. Triazole Antifungal Agents in Invasive Fungal Infections. Drugs. 2011 Dec; 71(18):2405-19. doi.org/10.2165/11596540-000000000-00000
2.    Watt K, Manzoni P, Cohen-Wolkowiez M, Rizzollo S, Boano E, Jacqz-Aigrain E, K Benjamin D. Triazole use in the Nursery: Fluconazole, Voriconazole, Posaconazole, and Ravuconazole. Current Drug Metabolism. 2013 Feb 1; 14(2):193-202. doi.org/10.2174/138920013804870583
3.    Neofytos D, Avdic E, Magiorakos Ap. Clinical Safety and Tolerability Issues in use of Triazole Derivatives in Management of Fungal Infections. Drug, Healthcare and Patient Safety. 2010; 2:27. doi: 10.2147/Dhps.S6321
4.    Peyton LR, Gallagher S, Hashemzadeh M. Triazole Antifungals: A Review. Drugs Today. 2015 Dec 1; 51(12):705-18.
5.    Martínez-Matías N, Rodríguez-Medina JR. Fundamental Concepts of Azole Compounds and Triazole Antifungals: A Beginner’s Review. Puerto Rico Health Sciences Journal. 2018 March; 37(1):3.
6.    Shalini K, Kumar N, Drabu S, Sharma PK. Advances in Synthetic Approach to and Antifungal Activity of Triazoles. Beilstein Journal of Organic Chemistry. 2011May 25; 7(1):668-77. doi.Org/10.3762/Bjoc.7.79
7.    Srivatsan V, Dasgupta AK, Kale P, Datla RR, Soni D. Patel M, Patel R, Mavadhiya C. Simultaneous Determination of Itraconazole and Hydroxyitraconazole in Human Plasma by High-Performance Liquid Chromatography. Journal of Chromatography A. 2004 March 26; 1031(1-2):307-13. doi.Org/10.1016/J.Chroma.2003.11.061
8.    Michael C, Teichert J, Preiss R. Determination of Voriconazole in Human Plasma and Saliva using High-Performance Liquid Chromatography with Fluorescence Detection. Journal of Chromatography B. 2008 April 1; 865(1-2):74-80. doi.Org/10.1016/J.Jchromb.2008.02.009
9.    Rhim SY, Park JH, Park YS, Kim DS, Lee MH, Shaw LM, Kang JS. A Sensitive Validated LC-MS/MS Method for Quantification of Itraconazole in Human Plasma for Pharmacokinetic and Bioequivalence Study in 24 Korean Volunteers. Die Pharmazie-An International Journal of Pharmaceutical Sciences. 2009 Feb 1; 64(2):71-5. doi.Org/10.1691/Ph.2009.7795
10.    BrüGgemann RJ, Touw DJ, Aarnoutse RE, Verweij PE, Burger DM. International Interlaboratory Proficiency Testing Program for Measurement of Azole Antifungal Plasma Concentrations. Antimicrobial Agents and Chemotherapy. 2009 Jan; 53(1):303-5. doi.Org/10.1128/AAC.00901-08
11.    Stradiotto NR, Yamanaka H, Zanoni MV. Electrochemical Sensors: A Powerful Tool in Analytical Chemistry. 2003; 159-173. doi.Org/10.1590/S0103-50532003000200003
12.    Tonelli D, Scavetta E, Gualandi I. Electrochemical Deposition of Nanomaterials for Electrochemical Sensing. Sensors. 2019 Jan; 19(5):1186. doi.Org/10.3390/S19051186
13.    Ghalkhani M, Ghorbani-Bidkorbeh F. Development of Carbon Nanostructured Based Electrochemical Sensors for Pharmaceutical Analysis. Iranian Journal of Pharmaceutical Research. 2019; 18(2):658. doi: 10.22037/Ijpr.2019.1100645
14.    Vidhi RPatel, Dhrubo Jyoti Sen, CN Patel. Synthesis, Purification and Identification of Carbon Nanotubes: A Review. Research Journal of Science and Technology. 2011; 3(3): 137-150.
15.    Ishraq MHassan, Duha MALatif. The Effect of MGO Nanoparticles on Structure and optical Properties of PVA-PAAm Blend. Research Journal of Science and Technology. 2019; 12(6): 2768-2771. doi: 10.5958/0974-360X.2019.00464.5
16.    Madhu Yadav, Pankaj Baboo, Nisha Gupta, Vandana Arora. Composition and Characterisation of Argent Nanoparticles and Argent Bionanocomposities. Asian Journal of Research in Chemistry. 2018; 11(5):811-814. doi: 10.5958/0974-4150.2018.00143.8
17.    Harkamal Preet Singh, Amit Chauhan, Prashant Jindal. Fabrication of Al2024/MWCNT Composite. Research Journal of Science and Technology. 2017; 8(3): 191-194. doi: 10.5958/2321-581X.2017.00031.9
18.    Sunil HGanatra, Sneha DKhobragade, Anushree SUjjankar, Chudaman DPourkar. Studies of Thermal Conductivity in Carbon Nanotubes Using Simulation. Asian Journal of Research in Chemistry. 2012 April; 5(4): 500-503.
19.    Fasiuddin Arif Mohammad, Kishore Rapolu, Shanthan Kumar Valugonda, Srinivas Balusu. Optimization of Cuprous Oxide Nanocrystals Deposition on Multiwalled Carbon Nanotubes. Asian Journal of Research in Chemistry. 2012 January; 5(1): 116-124.
20.    D. Jesudurai, RMonika. Preparation of Silver Nanoparticles from Bael (Aegle marmelos) Leaves Extract and their Doping with Multiwalled Carbon Nanotubes for Antibacterial Utility. Research Journal of Pharmacy and Technology 2020; 13(6):2653-2657. doi: 10.5958/0974-360X.2020.00471.0
21.    Krishnat DDhekale, Ravindra NKamble. Development of cefdinir loaded Functionalized carbon Nanotubes dry powder Inhaler for the Treatment of cystic Fibrosis. Research Journal of Pharmacy and Technology. 2021; 14(7):3839-5. doi: 10.52711/0974-360X.2021.00666
22.    Cha C, Shin SR, Annabi N, Dokmeci MR, Khademhosseini A. Carbon-Based Nanomaterials: Multifunctional Materials for Biomedical Engineering. American Chemical Society Nano. 2013 April 23; 7(4):2891-7. doi.Org/10.1021/Nn401196a
23.    Adhikari BR, Govindhan M, Chen A. Carbon Nanomaterials based Electrochemical Sensors/Biosensors for the Sensitive Detection of Pharmaceutical and Biological Compounds. Sensors. 2015 Sep; 15(9):22490-508. doi.Org/10.3390/S150922490
24.    Zhao Q, Gan Z, Zhuang Q. Electrochemical Sensors based on Carbon Nanotubes. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis. 2002 Dec; 14(23):1609-13.doi.Org/10.1002/Elan.200290000
25.    Wang J. Carbon‐Nanotube based Electrochemical Biosensors: A Review. Electroanalysis: An International Journal Devoted to Fundamental And Practical Aspects of Electroanalysis. 2005 Jan; 17(1):7-14. doi.Org/10.1002/Elan.200403113
26.    Hu C, Hu S. Carbon Nanotube-Based Electrochemical Sensors: Principles and Applications in Biomedical Systems. Journal of Sensors. 2009 Nov. doi.Org/10.1155/2009/187615
27.    Wernik JM, Meguid SA. Recent Developments in Multifunctional Nanocomposites Using Carbon Nanotubes. Applied Mechanics Reviews. 2010 Sep 1 ;63(5). doi.Org/10.1115/1.4003503
28.    Aftab S, Kurbanoglu S, Ozcelikay G, Shah A, Ozkan SA. NH2‐Functionalized Multi Walled Carbon Nanotubes Decorated with Zno Nanoparticles and Graphene Quantum Dots for Sensitive Assay of Pimozide. Electroanalysis. 2019 Jun; 31(6):1083-94. doi.Org/10.1002/Elan.201800788
29.    Munir A, Bozal-Palabiyik B, Khan A, Shah A, Uslu B. A Novel Electrochemical Method for the Detection of Oxymetazoline Drug based on Mwcnts and Tio2 Nanoparticles. Journal of Electroanalytical Chemistry. 2019; 844:58-65. doi.Org/10.1016/J.Jelechem.2019.05.017
30.    Fayemi OE, Adekunle AS, Ebenso EE. Metal Oxide Nanoparticles/Multi-Walled Carbon Nanotube Nanocomposite Modified Electrode for the Detection of Dopamine: Comparative Electrochemical Study. Journal of Biosensor and Bioelectronics. 2015; 6:190-204. doi: 10.4172/2155-6210.1000190
31.    Arvand M, Palizkar B. Development of A Modified Electrode with Amine-Functionalized Tio2/Multi-Walled Carbon Nanotubes Nanocomposite for Electrochemical Sensing of the a typical Neuroleptic Drug Olanzapine. Materials Science and Engineering: C. 2013 Dec 1; 33(8):4876-83. doi.Org/10.1016/J.Msec.2013.08.002
32.    Shojaei AF, Tabatabaeian K, Shakeri S, Karimi F. A Novel 5-Fluorouracile Anticancer Drug Sensor based on Znfe2o4 Magnetic Nanoparticles Ionic Liquids Carbon Paste Electrode. Sensors and Actuators B: Chemical. 2016 July 1; 230:607-14. doi.Org/10.1016/J.Snb.2016.02.082
33.    Dange YD, Honmane SM, Patil PA, Gaikwad UT, Jadge DR. Nanotechnology, Nanodevice Drug Delivery System: A Review. Asian Journal of Pharmaceutical Sciences. 2017; 7(2): 63-71. doi: 10.5958/2231-5713.2017.00010.1
34.    S Viswanathan, NVinoth Kumar, Prathiba Srinivasan, SPrabhu. Nanoparticle-Mediated Drug Delivery Systems. Research Journal of Applied Sciences, Engineering and Technology. 2013 Oct.-Dec; 4(4): 295-299.
35.    Syed Zia ul Quasim, Mohd Irfan Ali, Syed Irfan, Abdul Naveed. Advances in Drug Delivery System: Carbon Nanotubes. Research Journal of Pharmacy and Technology. 2013 Feb; 6(2): 125-129.
36.    Eteya MM, Rounaghi GH, Deiminiat B. Fabrication of A New Electrochemical Sensor Based on Aupt Bimetallic Nanoparticles Decorated Multi-Walled Carbon Nanotubes for Determination of Diclofenac. Microchemical Journal. 2019 Jan 1; 144:254-60. doi.Org/10.1016/J.Microc.2018.09.009
37.    Shetti NP, Malode SJ, Nayak DS, Aminabhavi TM, Reddy KR. Nanostructured Silver Doped Tio2/Cnts Hybrid as an Efficient Electrochemical Sensor for Detection of Anti-Inflammatory Drug, Cetirizine. Microchemical Journal. 2019 March 1; 150:104124. doi.Org/10.1016/J.Microc.2019.104124
38.    Montes RH, Lima AP, Cunha RR, Guedes TJ, Dos Santos WT, Nossol E, Richter EM, Munoz RA. Size Effects of Multi-Walled Carbon Nanotubes on The Electrochemical Oxidation of Propionic Acid Derivative Drugs: Ibuprofen and Naproxen. Journal of Electroanalytical Chemistry. 2016 Aug 15; 775:342-9. doi.Org/10.1016/J.Jelechem.2016.06.026
39.    Aftab S, Kurbanoglu S, Ozcelikay G, Shah A, Ozkan SA. NH2‐Functionalized Multi Walled Carbon Nanotubes Decorated with Zno Nanoparticles and Graphene Quantum Dots for Sensitive Assay of Pimozide. Electroanalysis. 2019 Jun; 31(6):1083-94. doi.Org/10.1002/Elan.201800788
40.    Munir A, Bozal-Palabiyik B, Khan A, Shah A, Uslu B. A Novel Electrochemical Method for the Detection of Oxymetazoline Drug based on Mwcnts and Tio2 Nanoparticles. Journal of Electroanalytical Chemistry. 2019 July 1; 844:58-65. doi.Org/10.1016/J.Jelechem.2019.05.017
41.    Rajaei M, Foroughi MM, Jahani S, Zandi MS, Nadiki HH. Sensitive Detection of Morphine in the Presence of Dopamine with La3+ Doped Fern-Like Cuo Nanoleaves/Mwcnts modified Carbon Paste Electrode. Journal of Molecular Liquids. 2019 July 15; 284:462-72. doi.Org/10.1016/J.Molliq.2019.03.135
42.    Arvand M, Palizkar B. Development of A Modified Electrode with Amine-Functionalized Tio2/Multi-Walled Carbon Nanotubes Nanocomposite for Electrochemical Sensing of the a typical Neuroleptic Drug Olanzapine. Materials Science and Engineering C. 2013 Dec 1; 33(8):4876-83. doi.Org/10.1016/J.Msec.2013.08.002
43.    Shojaei AF, Tabatabaeian K, Shakeri S, Karimi F. A Novel 5-Fluorouracile Anticancer Drug Sensor based on Znfe2o4 Magnetic Nanoparticles Ionic Liquids Carbon Paste Electrode. Sensors and Actuators B: Chemical. 2016 July 1; 230:607-14. doi.Org/10.1016/J.Snb.2016.02.082
44.    Rahmanifar E, Yoosefian M, Karimi-Maleh H. Application of Cdo/Swcnts Nanocomposite Ionic Liquids Carbon Paste Electrode as a Voltammetric Sensor for Determination of Benserazide. Current Analytical Chemistry. 2017 Feb 1; 13(1):46-51.
45.    Ajayan PM, Zhou OZ. Applications of Carbon Nanotubes. Carbon Nanotubes. 2001:391-425. doi.Org/10.1007/3-540-39947-X_14
46.    Tonelli D, Scavetta E, Gualandi I. Electrochemical Deposition of Nanomaterials for Electrochemical Sensing. Sensors. 2019 Jan; 19(5):1186. doi.Org/10.3390/S19051186
47.    Afrashi M, Semnani D, Talebi Z, Dehghan P, Maheronnaghsh M. Novel Multi-Layer Silica Aerogel/PVA Composite for Controlled Drug Delivery. Materials Research Express. 2019 July 17; 6(9):095408. doi.Org/10.1088/2053-1591/Ab3097
48.    Gil ÉDS, Cordeiro DD, Matias AE, Serrano SH. Electrochemical Behavior and Determination of Fluconazole. Journal of the Brazilian Chemical Society. 2011; 22(4), 767-771.
49.    Zad ZR, Davarani SS, Taheri A, Bide Y. A Yolk Shell Fe3O4@ PA-Ni@ Pd/Chitosan Nanocomposite-Modified Carbon Ionic Liquid Electrode as a New Sensor for the Sensitive Determination of Fluconazole in Pharmaceutical Preparations and Biological Fluids. Journal of Molecular Liquids. 2018 March 1; 253:233-doi.Org/10.1016/J.Molliq.2018.01.019
50.    Bailey EM, Krakovsky DJ, Rybak MJ. The Triazole Antifungal Agents: A Review of Itraconazole and Fluconazole. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy. 1990 March 4; 10(2):146-53. doi.Org/10.1002/J.1875-9114.1990.Tb02561.X
51.    Chen H, Luo K, Li K. A Facile Electrochemical Sensor based on Nio-Zno/MWCNT-COOH modified GCE for Simultaneous Quantification of Imatinib and Itraconazole. Journal of the Electrochemical Society. 2019 May 16; 166(8):697. doi.Org/10.1149/2.1071908jes
52.    Sultan MA, Attia AK, El-Alamin MM, Atia MA. The Novel Use of Multiwalled Carbon Nanotubes-based Sensors for Voltammetric Determination of Itraconazole: Application to Pharmaceutical Dosage form and Biological Samples through Spiked Urine Sample. World Journal of Pharmacy and Pharmaceutical Sciences. 2016 June 20; 5:93-108.
53.    Srivatsan V, Dasgupta AK, Kale P, Datla RR, Soni D, Patel M, Patel R, Mavadhiya C. Simultaneous Determination of Itraconazole and Hydroxyitraconazole in Human Plasma by High-Performance Liquid Chromatography. Journal of Chromatography A. 2004 March 26; 1031(1-2):307-13. doi.Org/10.1016/J.Chroma.2003.11.061
54.    Jaruratanasirikul S, Sriwiriyajan S. Pharmacokinetic Study of the Interaction Between Itraconazole and Nevirapine. European Journal of Clinical Pharmacology. 2007 May; 63(5):451-6. doi.Org/10.1007/S00228-007-0280-X
55.    Norouzi P, Ganjali MR, Qomi M, Nemati Kharat A, Zamani HA. Monitoring of Anti Cancer Drug Letrozole by Fast Fourier Transform Continuous Cyclic Voltammetry at Gold Microelectrode. Chinese Journal of Chemistry. 2010 July; 28(7):1133-9. doi.Org/10.1002/Cjoc.201090197
56.    Ganjali MR, Karimi A, Norouzi P. Letrozole Potentiometric PVC Membrane and Nano-Composite Carbon Paste Electrodes. International Journal of Electrochemistry 2012 April 1; 7:3681-92.
57.    Saleh TA, Alaqad KM, Rahim A. Electrochemical Sensor for the Determination of Ketoconazole based on Gold Nanoparticles Modified Carbon Paste Electrode. Journal of Molecular Liquids. 2018 April 15; 256:39-48. doi.Org/10.1016/J.Molliq.2018.02.006
58.    Mielech-Łukasiewicz K, Rogińska K. Voltammetric Determination of Antifungal Agents in Pharmaceuticals and Cosmetics Using Boron-Doped Diamond Electrodes. Analytical Methods. 2014; 6(19):7912-22. doi.Org/10.1039/C4AY01421A
59.    Hassan RY, Sultan MA, El‐Alamin MM, Atia MA, Aboul‐Enein HY. A Disposable Carbon Nanotubes‐Screen Printed Electrode (Cnts‐SPE) for Determination of the Antifungal Agent Posaconazole in Biological Samples. Electroanalysis. 2017 March; 29(3):843-9. doi.Org/10.1002/Elan.201600621

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available