Author(s):
Prafulla Chaudhari, Snehal Jadhav, Priyanka Chaudhari, Sagar Wankhede, Shital Chandewar
Email(s):
psc.ccopr@gmail.com
DOI:
10.52711/0974-360X.2023.00224
Address:
Prafulla Chaudhari1*, Snehal Jadhav1, Priyanka Chaudhari2, Sagar Wankhede2, Shital Chandewar3
1Department of Pharmaceutical Quality Assurance, JSPM’s Charak College of Pharmacy and Research, Wagholi, Pune - 412207, Maharashtra, India.
2Department of Pharmaceutical Chemistry, JSPM’s Charak College of Pharmacy and Research, Wagholi, Pune - 412207, Maharashtra, India.
3Datta Meghe College of Pharmacy, Datta Meghe Institute of Medical Sciences (Deemed to be University), Wardha, Maharashtra, India.
*Corresponding Author
Published In:
Volume - 16,
Issue - 3,
Year - 2023
ABSTRACT:
The aim of the present study is to implement QbD approach for development and optimization of Tacrolimus Loaded Reconstituted Nanoparticles. Tacrolimus-loaded nanoparticles were prepared by using Kollisolve PEG 300, Kolliphor ELP, Citrate buffer solution and Tween 80. The aqueous medium was added drop by drop into the organic phase at continuous stirring on a magnetic stirrer for half an hour. The solution then homogenized at high pressure that reduced particle size. Drying was done by using Low Endotoxin Lactose Monohydrate as a carrier. The final reconstituted powder stored in a closed container and assessed for zeta potential, drug loading, FT-IR Studies, Particle Size Analysis, SEM, X-Ray Diffraction, DSC etc. Optimization was performed by using Design Expert 8 software, 3 Level Factorial design was selected from Response Surface Design. The drug was found to be 98.65% w/w by assay. The particle size was found to be in the range of 263nm - 500nm. Tacrolimus powder shows O-H stretching vibration at 3374.91cm-1, C = O stretching vibrations at 1733.38 cm-1, and C = C stretching vibration at 1631.55 cm-1, C–O (ester) stretching vibration at 1248.11 cm-1. Tacrolimus nanoparticles were optimized by QbD method, Methanol: Phosphate Buffer (80:20) solvent phase was used having pH 6. The maximum wavelength of Tacrolimus was found to be 293nm. The desirability value of that optimized method was found to be 1. Tacrolimus Loaded Reconstituted Nanoparticles leads to enhanced solubility and we can conclude that an increase in pH was responsible for increment in absorbance and thus showed the direct relationship between them.
Cite this article:
Prafulla Chaudhari, Snehal Jadhav, Priyanka Chaudhari, Sagar Wankhede, Shital Chandewar. Optimization of Tacrolimus Loaded Reconstituted Nanoparticles by QbD Method. Research Journal of Pharmacy and Technology 2023; 16(3):1359-8. doi: 10.52711/0974-360X.2023.00224
Cite(Electronic):
Prafulla Chaudhari, Snehal Jadhav, Priyanka Chaudhari, Sagar Wankhede, Shital Chandewar. Optimization of Tacrolimus Loaded Reconstituted Nanoparticles by QbD Method. Research Journal of Pharmacy and Technology 2023; 16(3):1359-8. doi: 10.52711/0974-360X.2023.00224 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2023-16-3-60
REFERENCES:
1. Thapa R, Baskaran R, Thiagarajan M, Jong K, Chul Y, Bong KY. Preparation, Characterization, and Release Study of Tacrolimus-Loaded Liquid Crystalline Nanoparticles. J Dispersion Sci Tech, 2013; 34(1):72–77. doi:org/10.1080/01932691.2011.648462
2. Naik A, Palanivelu DV. Utilization of Nanoparticles in Protein Formulation, Novel Appr Drug design dev, 2017; 2 (1): 001-006. doi: 10.19080/NAPDD.2017.02.555580
3. Liu L, Wang S. Loading of Tacrolimus containing lipid based drug delivery systems into mesoporous silica for extended release. Asian J Pharm Sci, 2016; 11 (6): 751–759. doi:org/10.1016/j.ajps.2016.07.005
4. Shirsat AE, Chitlange SS. Quality by Design Approach to Optimization of Tacrolimus Loaded Plga Nanoparticles. Int J Pharm Sci Res, 2015; 6 (10): 4342-4353.doi: 10.13040/IJPSR.0975-8232. 6 (10).4342-53
5. Patel HK, Patel PV, Misan CK, Mehta DS, Patel MB. Development and characterization of liquid and solid self-micro-emulsifying drug delivery system of Tacrolimus. Asian J Pharm 2012; 2; 6 (3): 204-211. doi: http://dx.doi.org/10.22377/ajp.v6i3.56
6. Danhier F, Ansorena E, Silva JM, Coco R, Breton AL, Preat V (2012) PLGA-based Nanoparticles: An overview of biomedical applications. J Cont Rel 2012; 5: 505-522. doi: 10.1016/j.jconrel.2012.01.043
7. Lippincott WW. Remington’s the science and practice of pharmacy, 21th ed. Vol I, B.I. Publications, 2005; 338-360.
8. Farahani TD, Entezami AA, Mobedi H, Abtahi M. Degradation of Poly (D, L-lactide-co-glycolide) 50:50 Implant in Aqueous Medium. Iranian Poly J. 2005; 14(8):753-763. doi:10.1.1.615.242andrep=rep1andtype=pdf
9. Anderson JM, Shive MS. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Del Rev, 1997; 1:5–24. doi: 10.1016/s0169-409x (97) 00048-3
10. Muthu MS, Rawat MK, Mishra A, Singh S. PLGA Nanoparticles formulations of risperidone: preparation and neuro-pharmacological evaluation. Nano Nanotech Bio Medi, 2009; 5: 323–333. doi: 10.1016/j.nano.2008.12.003
11. Seju U, Kumar A, Sawant KK. Development and evaluation of olanzapine-loaded PLGA Nanoparticles for nose-to-brain delivery: In vitro and in vivo studies. Acta Biomaterilia, 2011; 7: 4169–4176. doi: 10.1016/j.actbio.2011.07.025
12. Wang R, Longnian Li, Wang B, Zhang T, Sun L. FK506-loaded solid lipid Nanoparticles: Preparation, characterization and in vitro transdermal drug delivery. African J Pharm Pharma, 2012; 6(12):904-913. doi: 10.5897/AJPP11.831.
13. Bunnapradista S, Ciechanowskib K, West-Thielkec P, Mulgaonkard S, Rostainge L, Vasudevf B, Buddeg K. Conversion from twice-daily tacrolimus to once-daily extended release tacrolimus (LCPT): The phase III randomized MELT trial. American J. Transplantation, 2013; 13 (3): 760–769. doi: 10.1111/ajt.12035
14. Kiemeneij IM, Leeuw FE, Ramos LM, Gijn JV. Acute headache as a presenting symptom of tacrolimus encephalopathy. J Neu Neuro Psych, 2003;74(8):1126–1127. doi: 10.1136/jnnp.74.8.1126
15. Naif O, Harbi AL, Faisal I, Mohammed M, Muzaffar I, Ahmed N, Mohammed M, Sayed A, Alabidy AL, Ali F. Olmesartan Attenuates Tacrolimus-Induced Biochemical and Ultrastructural Changes in Rat Kidney Tissue. Bio Med Res Intl, 2014; 5:607246. doi:org/10.1155/2014/607246.
16. Wenhui P, Mengyao Q, Guoguang Z, Yueming L, Wenyi R, Jingtong P, Zushuai WT. Combination of hydrotropic nicotinamide with nanoparticles for enhancing Tacrolimus percutaneous delivery. Int J Nano Med Dovepress, 2016; 11: 4037- 4050. doi:10.2147/IJN.S108545
17. Yan-ping W, Yong GAN, Xin-xin Z. Novel gastro retentive sustained-release tablet of Tacrolimus based on self-micro emulsifying mixture: in vitro evaluation and in vivo bioavailability test. Acta Pharmacologica Sinica, 2013; 32 (10): 1294-302. doi: 10.1038/aps.2011.90.
18. Kokubun K, Matsumura S, Yudasaka M, Iijima S, Shiba K. Immobilization of a carbon nanomaterial-based localized drug-release system using a bi-specific material-binding peptide. Int J Nanomedicine, 2018; 13:1643-1652. doi:org/10.2147/IJN.S155913
19. Ganorkar AV, Gupta KR. Analytical Quality by Design: A Mini Review. Biomed J Sci and Tech Res, 2017; 1(6):1555-1559. doi: 10.26717/BJSTR.2017.01.000484
20. Darkunde SL. A review on quality by design Intl J Pharm Chem and Ana, 2018; 18; 5(1):1-6. doi: 10.18231/2394-2797.2018.0001
21. Srujani CH, Annapurna P, Nataraj KS, Pawar KM. Analytical Quality by Design Approach in RP-HPLC Method Development and Validation for the Estimation of Duvelisib. Asian J Pharm Clinical Res, 2021; 14: (2)-99-108. doi:10.22159/ajpcr.2021.v14i2.40181
22. Sharma S, Goyal S, Chauhan K. A Review on Analytical Method Development and Validation. Int J App Pharm, 2018; 10 (6): 8-15. doi:org/10.22159/ijap.2018v10i6.28279).
23. Wenhui P, Mengyao Q, Guoguang Z, Yueming L, Wenyi R, Jingtong P, Zushuai WT. Combination of hydrotropic nicotinamide with nanoparticles for enhancing Tacrolimus percutaneous delivery. Int J Nano Med Dovepress, 2016; 11: 4037- 4050. doi:10.2147/IJN.S108545
24. Yang Y, Hu Y, Du H, Ren L, Wang H. Colloidal plasmonic gold nanoparticles and gold nanorings: shape-dependent generation of singlet oxygen and their performance in enhanced photodynamic cancer therapy. Int J Nanomed, 2018; 5: (13): 2065-2078. doi: 10.2147/IJN.S156347
25. Benedec D, Oniga I, Cuibus F, Sevastre B, Stiufiuc G, Duma M, Hanganu D, Iacovita C, Stiufiuc R, Lucaciu CM. Origanum vulgare mediated green synthesis of biocompatible gold nanoparticles simultaneously possessing plasmonic, antioxidant and antimicrobial properties. Int J Nanomed, 2018; 13:1041-1058. doi:org/10.2147/IJN.S149819
26. Hakeem A, Zahid F, Zhan G, Yi P, Yang H, Gan L, Yang X, Polyaspartic acid-anchored mesoporous silica nanoparticles for pH-responsive doxorubicin release. Int J Nano Medi, 2018; 13:1029-1040. doi: 10.2147/IJN.S146955
27. Chaudhari PS, Shanmugasundaram P. Modification and Characterization of Natural Polymer for Development of Dosage Forms. Int. J Pharm Tech Res, 2014; 6(3); 1131-1142. doi: https://www.sphinxsai.com/2014/phvolpt3/4/(1131-1142)Jul-Aug14.pdf).
28. Meghal AK, Chaudhari PS, Mathur VB. Formulation and evaluation of enteric coated HPMC capsule of diclofenac sodium. Res J Pharm Bio and Chem Sci, 2011; 2 (2): 790-797. doi:.http://www.rjpbcs.com/pdf/2011_2(2)/97.pdf).
29. Shirsat Ajinath E. Shirsat 1and Sohan S. Chitlange, Quality by Design Approach to Optimization of Tacrolimus Loaded Plga Nanoparticles. IJPSR, 2015; 6:4342-4353. doi: 10.13040/IJPSR.0975-8232.6 (10).4342-53).
30. ICH Q8, Quality guidance: Pharmaceutical Development. August 2009; (https://www.ema.europa.eu/en/documents/ scientific -guideline/international-conference-harmonisation-technical-requirements-registration-pharmaceuticals-human-use_en-19.pdf)
31. “ICH Q9, Quality guidance: Quality Risk Management” Jan 2006. https://www.ema.europa.eu/en/documents/scientific-guideline/international-conference-harmonisation-technical-requirements-registration-pharmaceuticals-human-use_en-3.pdf.
32. “ICH Q10, Quality guidance: Pharmaceutical Quality System” May 2007. https://elsmar.com/elsmarqualityforum /attachments /ich-q10-pharmaceutical-quality-system-pdf.13752/
33. “ICH Q11, Quality guidance: Development and Manufacture of Drug Substance”. May 2011. https : // www. ema. europa. eu /en/documents/scientific-guideline/draft-ich-guideline-q11-development-manufacture-drug-substances-chemical-entities-biotechnological/biological-entities_en.pdf
34. Indian Pharmacopoeia, Government of India Ministry of Health and Family Welfare, the Indian Pharmacopoeia Commission, Ghaziabad, 2014;1: 271.
35. Peraman R, Bhadraya K, Reddy YP, Analytical Quality by Design: A Tool for Regulatory Flexibility and Robust Analytics. Int J Anal Chem, 2015; 868727. doi: 10.1155/2015/868727
36. Lawrence XYu, Amidon G, Khan MA, Hoag SW, Polli J, Raju GK, Woodcock J. Understanding Pharmaceutical Quality by Design. AAPS J, 2014; 16(4): 771–783. doi: 10.1208/s12248-014-9598-3
37. Ganorkar AV, Gupta KR. Ganorkar AV, Gupta KR. “Analytical Quality by Design: A Mini Review”, Biomed J Sci and Tech Res, 2017; 1: (6) 1555-1559. doi: 10.26717/BJSTR.2017.01.000484.
38. Kannissery P, Tahir MA, Charoo NA, Ansari SH, Ali J. Pharmaceutical product development: A quality by design approach. Int J Pharm Investig, 2016; 6; 6(3):129-38. doi: 10.4103/2230-973X.187350
39. Singh B, Saini G, Chaudhary A, Verma K, Vyas M. Quality by Design: A Systematic Approach for the Analytical Method Validation. J Drug Deli and Thera, 2019; 9(3-s):1006-1012. doi:org/10.22270/jddt.v9i3-s.3114