Author(s): Antony Justin, Deepthi Murugan, Meghana Basavaraj, Ashwini Prem Kumar

Email(s): Antony Justin* , Deepthi Murugan , Meghana Basavaraj , Ashwini Prem Kumar

DOI: 10.52711/0974-360X.2023.00248   

Address: Antony Justin*, Deepthi Murugan, Meghana Basavaraj, Ashwini Prem Kumar
Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty 643 001, Nilgiris, Tamil Nadu, India.
*Corresponding Author

Published In:   Volume - 16,      Issue - 3,     Year - 2023


ABSTRACT:
Multiple sclerosis (MS) is a neurological condition with a complicated autoimmune component that mainly affects women in their forties and fifties. The disorder appears in several forms, ranging from episodic somatosensory impairment to progressive and irreversible central nervous system (CNS) injury. The fundamental cause of this disorder is lack of serotonin (5HT), a neurotransmitter with numerous immune effects. Decreased 5-HT levels or synthesis have also been related to increased proinflammatory cytokines in the CNS. Among several other proinflammatory cytokines, two prototypic pro-inflammatory cytokines, interleukin-1 (IL-1ß) and tumor necrosis factor (TNF-a) have been identified as primary effectors of neuroinflammation's functional effects on neurodegeneration.TNF-a is a pleiotropic cytokine that regulates homeostasis, immunity, and inflammation and IL-1ß is also a cytokine with neuroimmunological and neurophysiological functions. MS patients are usually on drugs that change the serotonergic system, because of increased clinical comorbidities and proven serotonin deficits. Several studies have shown that higher 5-HT levels have anti-inflammatory and immune-modulating properties, which could help to delay the progression of the disease.


Cite this article:
Antony Justin, Deepthi Murugan, Meghana Basavaraj, Ashwini Prem Kumar. Are 5HT7 Receptors Possible Target for Multiple Sclerosis?. Research Journal of Pharmacy and Technology 2023; 16(3):1514-0. doi: 10.52711/0974-360X.2023.00248

Cite(Electronic):
Antony Justin, Deepthi Murugan, Meghana Basavaraj, Ashwini Prem Kumar. Are 5HT7 Receptors Possible Target for Multiple Sclerosis?. Research Journal of Pharmacy and Technology 2023; 16(3):1514-0. doi: 10.52711/0974-360X.2023.00248   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2023-16-3-84


REFERENCES:
1.    Gitler AD, Dhillon P, Shorter J. Neurodegenerative disease: models, mechanisms, and a new hope. Dis Model Mech [Internet]. 2017 May 1 [cited 2021 Mar 2]; 10(5): 499–502. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5451177/
2.    Hussain R, Zubair H, Pursell S, Shahab M. Neurodegenerative Diseases: Regenerative Mechanisms and Novel Therapeutic Approaches. Brain Sci [Internet]. 2018 Sep 15 [cited 2021 Mar 10]; 8(9): 177. Available from: http://www.mdpi.com/2076-3425/8/9/177
3.    Cerqueira JJ, Compston DAS, Geraldes R, Rosa MM, Schmierer K, Thompson A, et al. Time matters in multiple sclerosis: can early treatment and long-term follow-up ensure everyone benefits from the latest advances in multiple sclerosis? J Neurol Neurosurg Psychiatry [Internet]. 2018 Aug 1 [cited 2021 Mar 10]; 89(8): 844–50. Available from: https://jnnp.bmj.com/content/89/8/844
4.    Baker D, Gerritsen W, Rundle J, Amor S. Critical appraisal of animal models of multiple sclerosis. Mult Scler J [Internet]. 2011 Jun [cited 2021 Mar 10]; 17(6): 647–57. Available from: http://journals.sagepub.com/doi/10.1177/1352458511398885
5.    Hernandez AMS, Singh C, Valero DJ, Nisar J, Ramirez JIT, Kothari KK, et al. Multiple Sclerosis and Serotonin: Potential Therapeutic Applications. Cureus [Internet]. 2020 Nov 2 [cited 2020 Nov 17]; 12(11). Available from: https://www.cureus.com/articles/42094-multiple-sclerosis-and-serotonin-potential-therapeutic-applications
6.    What Is MS? [Internet]. National Multiple Sclerosis Society. [cited 2021 Nov 25]. Available from: https://www.nationalmssociety.org/ What-is-MS
7.    Kobelt G, Thompson A, Berg J, Gannedahl M, Eriksson J. New insights into the burden and costs of multiple sclerosis in Europe. Mult Scler Houndmills Basingstoke Engl [Internet]. 2017 Jul [cited 2021 Mar 10]; 23(8): 1123–36. Available from: https:// www.ncbi.nlm.nih.gov/pmc/articles/PMC5476197/
8.    Calabresi PA. Diagnosis and Management of Multiple Sclerosis. Am Fam Physician [Internet]. 2004 Nov 15 [cited 2021 Mar 10]; 70(10): 1935–44. Available from: https://www.aafp.org/afp/2004/1115/ p1935.html
9.    Mount HT. Multiple sclerosis and other demyelinating diseases. Can Med Assoc J [Internet]. 1973 Jun 2 [cited 2021 Mar 10];108(11):1356-passim. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/ PMC1941527/
10.    Weinshenker BG. EPIDEMIOLOGY OF MULTIPLE SCLEROSIS. Neurol Clin [Internet]. 1996 May [cited 2021 Mar 10]; 14(2): 291–308. Available from: https://linkinghub.elsevier.com/retrieve/pii/ S0733861905702577
11.    N A, P A, R SK, N AK, R SK. A Study on the Assessment of clinical profile and treatment pattern of multiple Sclerosis in a Tertiary care Hospital. Res J Pharm Technol. 2020; 13(12): 6066–72.
12.    Bendfeldt K, Kappos L, Radue EW, Borgwardt SJ. Progression of gray matter atrophy and its association with white matter lesions in relapsing–remitting multiple sclerosis. J Neurol Sci [Internet]. 2009 Oct [cited 2021 Mar 10]; 285(1–2): 268–9. Available from: https:// linkinghub.elsevier.com/retrieve/pii/S0022510X09006273
13.    Datta G, Colasanti A, Rabiner EA, Gunn RN, Malik O, Ciccarelli O, et al. Neuroinflammation and its relationship to changes in brain volume and white matter lesions in multiple sclerosis. Brain [Internet]. 2017 Nov 1 [cited 2021 Mar 10]; 140(11): 2927–38. Available from: http:// academic.oup.com/brain/article/140/11/2927/4210384
14.    Hacohen Y, Ciccarelli O, Hemingway C. Abnormal white matter development in children with multiple sclerosis and monophasic acquired demyelination. Brain [Internet]. 2017 May [cited 2021 Mar 10]; 140(5): 1172–4. Available from: https://academic.oup.com/brain/ article-lookup/doi/10.1093/brain/awx075
15.    Lassmann H. Mechanisms of white matter damage in multiple sclerosis: Mechanisms of White Matter Damage in Multiple Sclerosis. Glia [Internet]. 2014 Nov [cited 2021 Mar 10]; 62(11): 1816–30. Available from: http://doi.wiley.com/10.1002/glia.22597
16.    Chalah MA, Ayache SS. Psychiatric event in multiple sclerosis: could it be the tip of the iceberg? Rev Bras Psiquiatr [Internet]. 2017 Mar 23 [cited 2021 Mar 10]; 39(4): 365–8. Available from: http:// www.scielo.br/scielo.php?script=sci_arttext&pid=S1516-44462017000400365&lng=en&tlng=en
17.    de Cerqueira AC, Semionato de Andrade P, Godoy Barreiros JM, Teixeira AL, Nardi AE. Psychiatric disorders in patients with multiple sclerosis. Compr Psychiatry [Internet]. 2015 Nov [cited 2021 Mar 10]; 63: 10–4. Available from: https://linkinghub.elsevier.com/retrieve/ pii/S0010440X15001327
18.    Honer WG, Hurwitz T, Li DKB, Palmer M, Paty DW. Temporal Lobe Involvement in Multiple Sclerosis Patients With Psychiatric Disorders. Arch Neurol [Internet]. 1987 Feb 1 [cited 2021 Mar 10]; 44(2): 187–90. Available from: http://archneur.jamanetwork.com/ article.aspx?articleid=586138
19.    Zambon AA, Cecchetti G, Caso F, Santangelo R, Baldoli C, Natali Sora MG, et al. Primary progressive multiple sclerosis presenting with severe predominant cognitive impairment and psychiatric symptoms: A challenging case. Mult Scler J [Internet]. 2017 Oct [cited 2021 Mar 10]; 23(11): 1558–61. Available from: http://journals.sagepub.com/ doi/10.1177/1352458517702550
20.    Goldenberg MM. Multiple Sclerosis Review. Pharm Ther [Internet]. 2012 Mar [cited 2020 Nov 11]; 37(3): 175–84. Available from: https:// www.ncbi.nlm.nih.gov/pmc/articles/PMC3351877/
21.    Compston A, Coles A. Multiple sclerosis. The Lancet [Internet]. 2008 Oct [cited 2021 Mar 12]; 372(9648): 1502–17. Available from: https:// linkinghub.elsevier.com/retrieve/pii/S0140673608616207
22.    Celius EG, Smestad C. Change in sex ratio, disease course and age at diagnosis in Oslo MS patients through seven decades. Acta Neurol Scand [Internet]. 2009 Aug [cited 2021 Mar 12]; 120: 27–9. Available from: http://doi.wiley.com/10.1111/j.1600-0404.2009.01208.x
23.    Varshney P, Saini P. An Overview of DRF in the treatment of Multiple Sclerosis. Res J Pharm Technol. 2020 Jun 23; 13(6): 2992–6.
24.    Burness CB, Deeks ED. Dimethyl fumarate: a review of its use in patients with relapsing-remitting multiple sclerosis. CNS Drugs. 2014 Apr; 28(4): 373–87.
25.    Calabresi PA, Goodin D, Jeffery D. Efficacy and safety of fingolimod versus placebo: primary outcomes from the phase 3 FREEDOMS II study in patients with relapsing-remitting multiple sclerosis. Mult Scler. 2012 Jan 1; 18: 55–277.
26.    de Sa JCC, Airas L, Bartholome E, Grigoriadis N, Mattle H, Oreja-Guevara C, et al. Symptomatic therapy in multiple sclerosis: a review for a multimodal approach in clinical practice. Ther Adv Neurol Disord [Internet]. 2011 May [cited 2021 Mar 12]; 4(3): 139–68. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/ PMC3105633/
27.    Huang W-J, Chen W-W, Zhang X. Multiple sclerosis: Pathology, diagnosis and treatments. Exp Ther Med [Internet]. 2017 Jun [cited 2021 Feb 26]; 13(6): 3163–6. Available from: https:// www.ncbi.nlm.nih.gov/pmc/articles/PMC5450788/
28.    Lugaresi A, di Ioia M, Travaglini D, Pietrolongo E, Pucci E, Onofrj M. Risk-benefit considerations in the treatment of relapsing-remitting multiple sclerosis. Neuropsychiatr Dis Treat. 2013; 9: 893–914.
29.    Poole L, Steptoe A. Depressive symptoms predict incident chronic disease burden 10 years later: Findings from the English Longitudinal Study of Ageing (ELSA). J Psychosom Res [Internet]. 2018 Oct [cited 2021 Mar 12]; 113: 30–6. Available from: https:// linkinghub.elsevier.com/retrieve/pii/S0022399918302198
30.    Kowalska M, Prendecki M, Kozubski W, Lianeri M, Dorszewska J. Molecular factors in migraine. Oncotarget [Internet]. 2016 May 14 [cited 2021 Mar 12]; 7(31): 50708–18. Available from: https:// www.oncotarget.com/article/9367/
31.    Theodore WH. Does Serotonin Play a Role in Epilepsy? Epilepsy Curr [Internet]. 2003 Sep [cited 2021 Mar 12]; 3(5): 173–7. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC321211/
32.    Dorszewska J, Prendecki M, Oczkowska A, Rozycka A, Lianeri M, Kozubski W. Polymorphism of the COMT, MAO, DAT, NET and 5-HTT Genes, and Biogenic Amines in Parkinson’s Disease. Curr Genomics [Internet]. 2013 Dec [cited 2021 Mar 12]; 14(8): 518–33. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/ PMC3924247/
33.    Davidson D, Pullar IA, Mawdsley C, Kinloch N, Yates CM. Monoamine metabolites in cerebrospinal fluid in multiple sclerosis. J Neurol Neurosurg Psychiatry [Internet]. 1977 Aug 1 [cited 2021 Mar 12]; 40(8): 741–5. Available from: https://jnnp.bmj.com/lookup/doi/ 10.1136/jnnp.40.8.741
34.    Hauser SL, Goodin DS. Multiple Sclerosis and Other Demyelinating Diseases. In: Kasper D, Fauci A, Hauser S, Longo D, Jameson JL, Loscalzo J, editors. Harrison’s Principles of Internal Medicine [Internet]. 19th ed. New York, NY: McGraw-Hill Education; 2014 [cited 2021 Nov 25]. Available from: accessmedicine.mhmedical.com/ content.aspx?aid=1129104282
35.    Sandyk R. SEROTONERGIC MECHANISMS IN AMYOTROPHIC LATERAL SCLEROSIS. Int J Neurosci [Internet]. 2006 Jan [cited 2021 Mar 12]; 116(7): 775–826. Available from: http:// www.tandfonline.com/doi/full/10.1080/00207450600754087
36.    Whitney MS, Shemery AM, Yaw AM, Donovan LJ, Glass JD, Deneris ES. Adult Brain Serotonin Deficiency Causes Hyperactivity, Circadian Disruption, and Elimination of Siestas. J Neurosci [Internet]. 2016 Sep 21 [cited 2021 Mar 12]; 36(38): 9828–42. Available from: http:// www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.1469-16.2016
37.    Hercigonja Novkovic V, Rudan V, Pivac N, Nedic G, Muck-Seler D. Platelet Serotonin Concentration in Children with Attention-Deficit/Hyperactivity Disorder. Neuropsychobiology [Internet]. 2009 [cited 2021 Mar 12]; 59(1): 17–22. Available from: https:// www.karger.com/Article/FullText/202825
38.    Wan M, Ding L, Wang D, Han J, Gao P. Serotonin: A Potent Immune Cell Modulator in Autoimmune Diseases. Front Immunol [Internet]. 2020 Feb 11 [cited 2020 Nov 19]; 11. Available from: https:// www.ncbi.nlm.nih.gov/pmc/articles/PMC7026253/
39.    Mohammad‐Zadeh LF, Moses L, Gwaltney‐Brant SM. Serotonin: a review. J Vet Pharmacol Ther [Internet]. 2008 [cited 2021 Feb 17]; 31(3): 187–99. Available from: https://onlinelibrary.wiley.com/ doi/abs/10.1111/j.1365-2885.2008.00944.x
40.    Ghia J, Li N, Wang H, Collins M, Deng Y, El–Sharkawy RT, et al. Serotonin Has a Key Role in Pathogenesis of Experimental Colitis. Gastroenterology [Internet]. 2009 Nov [cited 2021 Mar 12]; 137(5): 1649–60. Available from: https://linkinghub.elsevier.com/retrieve/ pii/S0016508509014565
41.    Watts SW, Morrison SF, Davis RP, Barman SM. Serotonin and Blood Pressure Regulation. Pharmacol Rev [Internet]. 2012 Apr [cited 2021 Mar 12]; 64(2): 359–88. Available from: https:// www.ncbi.nlm.nih.gov/pmc/articles/PMC3310484/
42.    Hoyer D, Clarke DE, Fozard JR, Hartig PR, Martin GR, Mylecharane EJ, et al. International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (Serotonin). Pharmacol Rev [Internet]. 1994 Jun 1 [cited 2021 Apr 26]; 46(2): 157–203. Available from: https://pharmrev.aspetjournals.org/content/46/2/157
43.    Peroutka SJ, Howell TA. The molecular evolution of G protein-coupled receptors: Focus on 5-hydroxytryptamine receptors. Neuropharmacology [Internet]. 1994 Mar [cited 2021 Mar 12]; 33(3–4): 319–24. Available from: https://linkinghub.elsevier.com/retrieve/ pii/0028390894900604
44.    Hoyer D, Hannon JP, Martin GR. Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol Biochem Behav [Internet]. 2002 Apr [cited 2021 Mar 12]; 71(4): 533–54. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0091305701007468
45.    Stiedl O, Pappa E, Konradsson-Geuken A, Ogren S. The role of the serotonin receptor subtypes 5-HT1A and 5-HT7 and its interaction in emotional learning and memory. Front Pharmacol. 2015 Aug 7; 6: Art. 162.
46.    Derkach V, Surprenant A, North RA. 5-HT3 receptors are membrane ion channels. Nature [Internet]. 1989 Jun [cited 2021 Mar 12]; 339(6227): 706–9. Available from: http://www.nature.com/articles/ 339706a0
47.    Nikiforuk A. Targeting the Serotonin 5-HT7 Receptor in the Search for Treatments for CNS Disorders: Rationale and Progress to Date. CNS Drugs [Internet]. 2015 [cited 2021 Apr 26]; 29(4): 265–75. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/ PMC4555343/
48.    Albayrak A, Halici Z, Cadirci E, Polat B, Karakus E, Bayir Y, et al. Inflammation and peripheral 5-HT7 receptors: The role of 5-HT7 receptors in carrageenan induced inflammation in rats. Eur J Pharmacol [Internet]. 2013 Sep [cited 2021 Apr 28]; 715(1–3): 270–9. Available from: https://linkinghub.elsevier.com/retrieve/pii/ S0014299913003877
49.    Furlan R, Poliani PL, Bergami A, Gironi M, Desina G, Martino G. The role of proinflammatory cytokines in multiple sclerosis. In: Gambi D, Muraro PA, Lugaresi A, Ecari U, editors. Advances in the Immunopathogenesis of Multiple Sclerosis. Milano: Springer Milan; 1999. p. 67–77.
50.    Robinson WH, Genovese MC, Moreland LW. Demyelinating and neurologic events reported in association with tumor necrosis factor α antagonism: By what mechanisms could tumor necrosis factor α antagonists improve rheumatoid arthritis but exacerbate multiple sclerosis? Arthritis Rheum [Internet]. 2001 [cited 2021 Apr 15]; 44(9): 1977–83. Available from: https://onlinelibrary.wiley.com/doi/abs/ 10.1002/1529-0131%28200109%2944%3A9%3C1977%3A%3AAID-ART345%3E3.0.CO%3B2-6
51.    Kollias G, Douni E, Kassiotis G, Kontoyiannis D. On the role of tumor necrosis factor and receptors in models of multiorgan failure, rheumatoid arthritis, multiple sclerosis and inflammatory bowel disease. Immunol Rev [Internet]. 1999 Jun [cited 2021 Apr 15]; 169(1): 175–94. Available from: http://doi.wiley.com/10.1111/j.1600-065X.1999.tb01315.x
52.    Caminero A, Comabella M, Montalban X. Tumor necrosis factor alpha (TNF-α), anti-TNF-α and demyelination revisited: An ongoing story. J Neuroimmunol [Internet]. 2011 May [cited 2021 Apr 15]; 234(1–2): 1–6. Available from: https://linkinghub.elsevier.com/retrieve/pii/ S016557281100066X
53.    Kassiotis G, Kollias G. Uncoupling the Proinflammatory from the Immunosuppressive Properties of Tumor Necrosis Factor (Tnf) at the P55 TNF Receptor Level. J Exp Med [Internet]. 2001 Feb 19 [cited 2021 Apr 15]; 193(4): 427–34. Available from: https:// www.ncbi.nlm.nih.gov/pmc/articles/PMC2195909/
54.    Lim S-Y, Constantinescu CS. TNF- : A Paradigm of Paradox and Complexity in Multiple Sclerosis and its Animal Models. :11.
55.    Weiss G, Schaible UE. Macrophage defense mechanisms against intracellular bacteria. Immunol Rev [Internet]. 2015 Mar [cited 2021 Apr 15]; 264(1): 182–203. Available from: https:// www.ncbi.nlm.nih.gov/pmc/articles/PMC4368383/
56.    Linkermann A, Stockwell BR, Krautwald S, Anders H-J. Regulated cell death and inflammation: an auto-amplification loop causes organ failure. Nat Rev Immunol [Internet]. 2014 Nov [cited 2021 Apr 15]; 14(11): 759–67. Available from: http://www.nature.com/articles/ nri3743
57.    Gold R. Understanding pathogenesis and therapy of multiple sclerosis via animal models: 70 years of merits and culprits in experimental autoimmune encephalomyelitis research. Brain [Internet]. 2006 Jul 1 [cited 2021 Apr 15]; 129(8): 1953–71. Available from: https:// academic.oup.com/brain/article-lookup/doi/10.1093/brain/awl075
58.    van Oosten BW, Barkhof F, Truyen L, Boringa JB, Bertelsmann FW, von Blomberg BME, et al. Increased MRI activity and immune activation in two multiple sclerosis patients treated with the monoclonal anti-tumor necrosis factor antibody cA2. Neurology [Internet]. 1996 Dec 1 [cited 2021 Apr 15]; 47(6): 1531–4. Available from: http://www.neurology.org/cgi/doi/10.1212/WNL.47.6.1531
59.    Fresegna D, Bullitta S, Musella A, Rizzo FR, De Vito F, Guadalupi L, et al. Re-Examining the Role of TNF in MS Pathogenesis and Therapy. Cells [Internet]. 2020 Oct 14 [cited 2021 Apr 15]; 9(10). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/ PMC7602209/
60.    Allan SM, Tyrrell PJ, Rothwell NJ. Interleukin-1 and neuronal injury. Nat Rev Immunol [Internet]. 2005 Aug [cited 2021 Apr 15]; 5(8): 629–40. Available from: http://www.nature.com/articles/nri1664
61.    Schumann RR, Belka C, Reuter D, Lamping N, Kirschning CJ, Weber JR, et al. Lipopolysaccharide Activates Caspase-1 (Interleukin-1–Converting Enzyme) in Cultured Monocytic and Endothelial Cells. Blood [Internet]. 1998 Jan 15 [cited 2021 Apr 15]; 91(2): 577–84. Available from: https://ashpublications.org/blood/article/91/2/ 577/258946/Lipopolysaccharide-Activates-Caspase1
62.    Denes A, Lopez-Castejon G, Brough D. Caspase-1: is IL-1 just the tip of the ICEberg? Cell Death Dis [Internet]. 2012 Jul [cited 2021 Apr 15]; 3(7): e338. Available from: https://www.ncbi.nlm.nih.gov/pmc/ articles/PMC3406585/
63.    Pitossi F, del Rey A, Kabiersch A, Besedovsky H. Induction of cytokine transcripts in the central nervous system and pituitary following peripheral administration of endotoxin to mice. J Neurosci Res. 1997 May 15; 48(4): 287–98.
64.    Layé S, Gheusi G, Cremona S, Combe C, Kelley K, Dantzer R, et al. Endogenous brain IL-1 mediates LPS-induced anorexia and hypothalamic cytokine expression. Am J Physiol-Regul Integr Comp Physiol [Internet]. 2000 Jul 1 [cited 2021 Apr 20]; 279(1): R93–8. Available from: https://journals.physiology.org/doi/full/10.1152/ ajpregu.2000.279.1.R93
65.    Burm SM, Peferoen LAN, Zuiderwijk-Sick EA, Haanstra KG, ‘t Hart BA, van der Valk P, et al. Expression of IL-1β in rhesus EAE and MS lesions is mainly induced in the CNS itself. J Neuroinflammation [Internet]. 2016 Jun 6 [cited 2021 Apr 13]; 13. Available from: https:// www.ncbi.nlm.nih.gov/pmc/articles/PMC4895983/
66.    Hesse S, Moeller F, Petroff D, Lobsien D, Luthardt J, Regenthal R, et al. Altered serotonin transporter availability in patients with multiple sclerosis. Eur J Nucl Med Mol Imaging [Internet]. 2014 May [cited 2021 Apr 20]; 41(5): 827–35. Available from: http://link.springer.com/ 10.1007/s00259-013-2636-z
67.    Farjadian S, Fakhraei B, Niknam Z, Nasiri M, Azad A, Farjam M, et al. Polymorphisms of serotonin transporter gene and psychological status in patients with multiple sclerosis. Iran J Neurol [Internet]. 2018 Jul 6 [cited 2021 Apr 20]; 17(3): 105–10. Available from: https:// www.ncbi.nlm.nih.gov/pmc/articles/PMC6420687/
68.    Deckx N, Lee W-P, Berneman ZN, Cools N. Neuroendocrine Immunoregulation in Multiple Sclerosis. Clin Dev Immunol [Internet]. 2013 [cited 2021 Apr 20]; 2013: 1–23. Available from: http:// www.hindawi.com/journals/jir/2013/705232/
69.    Vogel DY, Vereyken EJ, Glim JE, Heijnen PD, Moeton M, van der Valk P, et al. Macrophages in inflammatory multiple sclerosis lesions have an intermediate activation status. J Neuroinflammation [Internet]. 2013 Dec [cited 2021 Apr 20]; 10(1): 809. Available from: http:// jneuroinflammation.biomedcentral.com/articles/10.1186/1742-2094-10-35
70.    Marinelli C, Bertalot T, Zusso M, Skaper SD, Giusti P. Systematic Review of Pharmacological Properties of the Oligodendrocyte Lineage. Front Cell Neurosci [Internet]. 2016 Feb 12 [cited 2021 Apr 20];10. Available from: http://journal.frontiersin.org/Article/10.3389/ fncel.2016.00027/abstract
71.    Hernández-Torres G, Enríquez-Palacios E, Mecha M, Feliú A, Rueda-Zubiaurre A, Angelina A, et al. Development of a Fluorescent Bodipy Probe for Visualization of the Serotonin 5-HT 1A Receptor in Native Cells of the Immune System. Bioconjug Chem [Internet]. 2018 Jun 20 [cited 2021 Apr 20]; 29(6): 2021–7. Available from: https:// pubs.acs.org/doi/10.1021/acs.bioconjchem.8b00228
72.    Gong X, Xie Z, Zuo H. A new track for understanding the pathogenesis of multiple sclerosis: From the perspective of early developmental deficit caused by the potential 5-HT deficiency in individuals in high-latitude areas. Med Hypotheses [Internet]. 2008 Oct [cited 2021 Mar 15]; 71(4): 580–3. Available from: https:// linkinghub.elsevier.com/retrieve/pii/S0306987708002259
73.    Monaco F, Fumero S, Mondino A, Mutani R. Plasma and cerebrospinal fluid tryptophan in multiple sclerosis and degenerative diseases. J Neurol Neurosurg Psychiatry [Internet]. 1979 Jul 1 [cited 2021 Mar 12]; 42(7): 640–1. Available from: https://jnnp.bmj.com/ lookup/doi/10.1136/jnnp.42.7.640
74.    Cocco E, Murgia F, Lorefice L, Barberini L, Poddighe S, Frau J, et al. 1 H-NMR analysis provides a metabolomic profile of patients with multiple sclerosis. Neurol - Neuroimmunol Neuroinflammation [Internet]. 2016 Feb [cited 2021 Mar 12];3(1):e185. Available from: http://nn.neurology.org/lookup/doi/10.1212/NXI.0000000000000185
75.    Tagliamonte A, Biggio G, Vargiu L, Gessa GL. Free tryptophan in serum controls brain tryptophan level and serotonin synthesis. Life Sci [Internet]. 1973 Mar [cited 2021 Mar 12]; 12(6): 277–87. Available from: https://linkinghub.elsevier.com/retrieve/pii/0024320573903615
76.    Talaei F, Bouma HR, Van der Graaf AC, Strijkstra AM, Schmidt M, Henning RH. Serotonin and Dopamine Protect from Hypothermia/Rewarming Damage through the CBS/ H2S Pathway. Linden R, editor. PLoS ONE [Internet]. 2011 Jul 27 [cited 2021 Mar 12]; 6(7): e22568. Available from: https://dx.plos.org/10.1371/ journal.pone.0022568
77.    Anderson G, Rodriguez M. Multiple sclerosis: The role of melatonin and N-acetylserotonin. Mult Scler Relat Disord [Internet]. 2015 Mar [cited 2021 Mar 12]; 4(2): 112–23. Available from: https:// linkinghub.elsevier.com/retrieve/pii/S2211034814003526
78.    Lovelace MD, Varney B, Sundaram G, Franco NF, Ng ML, Pai S, et al. Current Evidence for a Role of the Kynurenine Pathway of Tryptophan Metabolism in Multiple Sclerosis. Front Immunol [Internet]. 2016 Aug 4 [cited 2021 Mar 12];7. Available from: http:// journal.frontiersin.org/Article/10.3389/fimmu.2016.00246/abstract
79.    Jang S-W, Liu X, Pradoldej S, Tosini G, Chang Q, Iuvone PM, et al. N -acetylserotonin activates TrkB receptor in a circadian rhythm. Proc Natl Acad Sci [Internet]. 2010 Feb 23 [cited 2021 Mar 12]; 107(8): 3876–81. Available from: http://www.pnas.org/lookup/doi/10.1073/ pnas.0912531107
80.    Markianos M, Koutsis G, Evangelopoulos M-E, Mandellos D, Karahalios G, Sfagos C. Relationship of CSF neurotransmitter metabolite levels to disease severity and disability in multiple sclerosis. J Neurochem [Internet]. 2009 Jan [cited 2021 Mar 12]; 108(1): 158–64. Available from: http://doi.wiley.com/10.1111/j.1471-4159.2008.05750.x
81.    Mostert JP, Admiraal-Behloul F, Hoogduin JM, Luyendijk J, Heersema DJ, van Buchem MA, et al. Effects of fluoxetine on disease activity in relapsing multiple sclerosis: a double-blind, placebo-controlled, exploratory study. J Neurol Neurosurg Psychiatry [Internet]. 2008 Feb 12 [cited 2021 Mar 12]; 79(9): 1027–31. Available from: https://jnnp.bmj.com/lookup/doi/10.1136/ jnnp.2007.139345
82.    Dorszewska J, Florczak-Wyspianska J, Kowalska M, Stanski M, Kowalewska A, Kozubski W. Serotonin in Neurological Diseases. Serotonin - Chem Messenger Types Living Cells [Internet]. 2017 Jul 26 [cited 2020 Nov 11]; Available from: https://www.intechopen.com/ books/serotonin-a-chemical-messenger-between-all-types-of-living-cells/serotonin-in-neurological-diseases
83.    Alvarenga-Filho H, Sacramento PM, Ferreira TB, Hygino J, Abreu JEC, Carvalho SR, et al. Combined exercise training reduces fatigue and modulates the cytokine profile of T-cells from multiple sclerosis patients in response to neuromediators. J Neuroimmunol [Internet]. 2016 Apr [cited 2021 Apr 20]; 293: 91–9. Available from: https:// linkinghub.elsevier.com/retrieve/pii/S0165572816300339
84.    Al-Sharman A, Khalil H, El-Salem K, Aldughmi M, Aburub A. The effects of aerobic exercise on sleep quality measures and sleep-related biomarkers in individuals with Multiple Sclerosis: A pilot randomised controlled trial. NeuroRehabilitation [Internet]. 2019 Sep 25 [cited 2021 Apr 20]; 45(1): 107–15. Available from: https://www.medra.org/ servlet/aliasResolver?alias=iospress&doi=10.3233/NRE-192748
85.    Lim CK, Bilgin A, Lovejoy DB, Tan V, Bustamante S, Taylor BV, et al. Kynurenine pathway metabolomics predicts and provides mechanistic insight into multiple sclerosis progression. Sci Rep [Internet]. 2017 Feb 3 [cited 2021 Apr 2]; 7. Available from: https:// www.ncbi.nlm.nih.gov/pmc/articles/PMC5290739/
86.    Wilson DR, Warise L. Cytokines and Their Role in Depression. Perspect Psychiatr Care [Internet]. 2008 Oct [cited 2021 Mar 12]; 44(4): 285–9. Available from: http://doi.wiley.com/10.1111/j.1744-6163.2008.00188.x
87.    Ghareghani M, Zibara K, Sadeghi H, Dokoohaki S, Sadeghi H, Aryanpour R, et al. Fluvoxamine stimulates oligodendrogenesis of cultured neural stem cells and attenuates inflammation and demyelination in an animal model of multiple sclerosis. Sci Rep [Internet]. 2017 Dec [cited 2021 Mar 15]; 7(1): 4923. Available from: http://www.nature.com/articles/s41598-017-04968-z
88.    Hofstetter HH, Mossner R, Lesch KP, Linker RA, Toyka KV, Gold R. Absence of reuptake of serotonin influences susceptibility to clinical autoimmune disease and neuroantigen-specific interferon-gamma production in mouse EAE. Clin Exp Immunol [Internet]. 2005 Oct [cited 2021 Mar 15]; 142(1): 39–44. Available from: http:// doi.wiley.com/10.1111/j.1365-2249.2005.02901.x

 

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available