Author(s): Nanditha Bhat, Abhishek Kumar, Pankaj Kumar, Aravinda Pai

Email(s): abhi12bunty@nitte.edu.in

DOI: 10.52711/0974-360X.2023.00455   

Address: Nanditha Bhat1, Abhishek Kumar1*, Pankaj Kumar1, Aravinda Pai2
1Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences (NGSMIPS) Department of Pharmaceutical Chemistry, Mangalore, India.
2Manipal Academy of Higher Education, Manipal College of Pharmaceutical Sciences (MCOPS), Department of Pharmaceutical Chemistry, Manipal, India.
*Corresponding Author

Published In:   Volume - 16,      Issue - 6,     Year - 2023


ABSTRACT:
Oxadiazoles, a class of five membered heterocyclic azoles, are considered to be a versatile scaffold and is found to be a core moiety of various pharmaceutically active agents.Oxadiazoles are known to inhibit alpha-amylase and alpha-glucosidase enzyme which is rational approach for selecting oxadiazole as antidiabetic agents in controlling postprandial hyperglycemia in type II diabetes mellitus. They are found to exist in 4 different regioisomeric forms namely 1,2,3-oxadiazole, 1,2,4-oxadiazole, 1,2,5-oxadiazole and 1,3,4-oxadiazole. Oxadiazoles are known to exhibit a wide range of biological activities and many mono and di-substituted oxadiazoles have been studied for their antihyperglycemic potential. Oxadiazoles have been found to act on various potential targets of the antidiabetic therapy. They are found to elicit hypoglycemic action by different mechanisms like inhibition of digestive enzymes, insulin sensitization, reduction of renal glucose reabsorption, etc. The results of various substituted oxadiazoles studied for their anti-diabetic activity has been reviewed in this article.


Cite this article:
Nanditha Bhat, Abhishek Kumar, Pankaj Kumar, Aravinda Pai. A Comprehensive Review on the Antidiabetic Activity of Oxadiazole Derivatives. Research Journal of Pharmacy and Technology 2023; 16(6):2771-2775. doi: 10.52711/0974-360X.2023.00455

Cite(Electronic):
Nanditha Bhat, Abhishek Kumar, Pankaj Kumar, Aravinda Pai. A Comprehensive Review on the Antidiabetic Activity of Oxadiazole Derivatives. Research Journal of Pharmacy and Technology 2023; 16(6):2771-2775. doi: 10.52711/0974-360X.2023.00455   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2023-16-6-33


REFERENCES:
1.    Mahler RJ. Adler ML. Type 2 diabetes mellitus: update on diagnosis, pathophysiology, and treatment. The Journal of Clinical Endocrinology and Metabolism. 1999; 84(4):1165-71. doi: https://dx.doi.org/10.1210/jcem.84.4.5612
2.    Nishath M, Azeem A, Veena S, Kumar KR. An overview on newer antidiabetic agents. Pharmaceutical Research. 2019;9(09).
3.    Chaudhury A. Duvoor C. Reddy Dendi VS. Kraleti S. Chada A. Ravilla R. Marco A et al. Clinical review of antidiabetic drugs: implications for type 2 diabetes mellitus management. Frontiers in Endocrinology. 2017; 8:6. doi: https://dx.doi.org/10.3389/fendo.2017.00006
4.    American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes care. 2010; 33(Supplement_1):S62-9. doi: https://doi.org/10.2337/dc10-S062
5.    DeFronzo RA. Ferrannini E. Groop L. Henry RR. Herman WH. Holst JJ. Hu FB et al. Type 2 diabetes mellitus. Nature reviews Disease primers. 2015; 1(1):1-22. doi: http://dx.doi.org/10.1038/nrdp.2015.19
6.    Kahn CR. The molecular mechanism of insulin action. Annual review of medicine. 1985; 36(1):429-51. doi: https://doi.org/10.1146/annurev.me.36.020185.002241
7.    KaulK.Tarr JM. Ahmad SI. Kohner EM. Chibber R. Introduction to diabetes mellitus. Diabetes. 2013:1-1. doi: https://doi.org/10.1007/978-1-4614-5441-0_1
8.    Forouhi NG. Wareham NJ. Epidemiology of diabetes. Medicine. 2010; 38(11):602-6. doi: http://dx.doi.org/10.1016/j.mpmed.2010.08.007
9.    Maahs DM. West NA. Lawrence JM. Mayer-Davis EJ. Epidemiology of type 1 diabetes. Endocrinology and Metabolism Clinics. 2010; 39(3):481-97. doi: https://dx.doi.org/10.1016/j.ecl.2010.05.011
10.    Ginter E. Simko V. Type 2 diabetes mellitus, pandemic in 21st century. Diabetes. 2013: 42-50. doi: 10.1007/978-1-4614-5441-0_6
11.    Antony J. Debroy S. Manisha C. Thomas P. Jeyarani V. Choephel T. In-vitro cell line models and assay methods to study the anti-diabetic activity. Research Journal of Pharmacy and Technology. 2019; 12(5):2200–6. doi: http://dx.doi.org/10.5958/0974-360X.2019.00367.6
12.    Siwach A. Verma PK. Therapeutic potential of oxadiazole or furadiazole containing compounds. BMC chemistry. 2020; 14(1):1-40. doi: https://doi.org/10.1186/s13065-020-00721-2
13.    Boström J. Hogner A. Llinàs A. Wellner E. Plowright AT. Oxadiazoles in medicinal chemistry. Journal of medicinal chemistry. 2012; 55(5):1817-30. doi: https://dx.doi.org/10.1021/jm2013248
14.    Shukla C. Srivastav S. Biologically Active Oxadiazole. Asian Journal of Research in Pharmaceutical Sciences. 2015 ;5(4):227-33. doi: 10.5958/2231-5659.2015.00033.8
15.    Soumya J. Rajitha G. Synthesis and Biological Evaluation of Naphthylmethyl-1, 3, 4-Oxadiazoles for Antioxidant and Antibacterial Activities. Asian Journal of Research in Chemistry. 2015; 8(2):141-6. doi: http://dx.doi.org/10.5958/0974-4150.2015.00025.5
16.    Glomb T. Świątek P. Antimicrobial Activity of 1, 3, 4-Oxadiazole Derivatives. International Journal of Molecular Sciences. 2021; 22(13):6979. doi: https://doi.org/10.3390/ijms22136979
17.    Al-Ostoot FH. Vidya R. Zabiulla. Mohammed YHE. Jyothi M. Pallavi HM et al. Statistical Analysis of Antimicrobial Data of 2-[2-(Aroyl)aroyloxy]methyl1, 3, 4 Oxadiazoles analogues Using ANOVA. Asian Journal of Research in Chemistry. 2018; 11(2):293-7. doi: https://doi.org/10.5958/0974-4150.2018.00055.X
18.    HurmathUnnissa S. Karthikaa T. Kavitha K. Kishore Priya S. Kowsalya M. Synthesis and biological evaluation of some 2,5-disubstituted 1,3,4-oxadiazole based cinnoline derivatives. Research Journal of Pharmacy and Technology. 2019; 12(10):4812–6. doi: https://doi.org/10.5958/0974-360X.2019.00832.1
19.    Kathiravan MK. Salake AB. Chothe AS. Dudhe PB. Watode RP. Mukta MS. Gadhwe S. The biology and chemistry of antifungal agents: a review. Bioorganic and Medicinal Chemistry. 2012; 20(19):5678-98. doi: https://dx.doi.org/10.1016/j.bmc.2012.04.045
20.    Mehta AN, Yadav J, Desai KR. Eco-Friendly Synthesis of Novel Fluorine Containing 1, 3, 4-Oxadiazoles as Antibacterial and Antifungal Agents. Asian Journal of Research in Chemistry. 2013;6(5):486-9.
21.    Singhai A, Gupta MK. Synthesis and characterization of 1, 3, 4-oxadiazole derivatives as potential anti-inflammatory and analgesic agents. Research Journal of Pharmacy and Technology. 2020; 13(12):5898-902. doi: https://doi.org/10.5958/0974-360X.2020.01029.X
22.    Divekar K. Vedigounder M. Sharma R. Synthesis and Characterization of some new Oxadiazole derivatives as Antiinflammatory agents. Research Journal of Pharmacy and Technology. 2019;12(5):2416-20. doi: https://doi.org/10.5958/0974-360X.2019.00405.0
23.    Chawla G. 1, 2, 4-Oxadiazole as a privileged scaffold for anti-inflammatory and analgesic activities: A review. Mini Reviews in Medicinal Chemistry. 2018; 18(18):1536-47. doi: http://dx.doi.org/10.2174/1389557518666180524112050
24.    Zadorozhnii PV. Kiselev VV. Teslenko NO. Kharchenko AV. Pokotylo IO. Okhtina OV et al. In silico Prediction and Molecular Docking Studies of N-amidoalkylated Derivatives of 1, 3, 4-oxadiazole as COX-1 and COX-2 Potential Inhibitors. Research Journal of Pharmacy and Technology. 2017; 10(11):3957-63. doi: https://doi.org/10.5958/0974-360X.2017.00718.1
25.    Kumar D. Kumar V. Marwaha R. Singh G. Oxadiazole-An Important Bioactive Scaffold for Drug Discovery and Development Process Against HIV and Cancer-A Review. Current Bioactive Compounds. 2019; 15(3):271-9. doi: http://dx.doi.org/10.2174/1573407213666171017160359
26.    Li Z. Zhan P. Liu X. 1, 3, 4-oxadiazole: a privileged structure in antiviral agents. Mini Reviews in Medicinal Chemistry. 2011; 11(13):1130-42. doi: https://dx.doi.org/10.2174/138955711797655407
27.    Vaidya A. Pathak D. Shah K. 1, 3, 4‐oxadiazole and its derivatives: A review on recent progress in anticancer activities. Chemical Biology and Drug Design. 2021; 97(3):572-91. doi: https://dx.doi.org/10.1111/cbdd.13795
28.    Bajaj S. Asati V. Singh J. Roy PP. 1, 3, 4-Oxadiazoles: an emerging scaffold to target growth factors, enzymes and kinases as anticancer agents. European Journal of Medicinal Chemistry. 2015; 97:124-41. doi: http://dx.doi.org/10.1016/j.ejmech.2015.04.051
29.    Pitasse-Santos P. Sueth-Santiago V. Lima ME. 1, 2, 4-and 1, 3, 4-Oxadiazoles as Scaffolds in the Development of Antiparasitic Agents. Journal of the Brazilian Chemical Society. 2018; 29:435-56. doi: https://doi.org/10.21577/0103-5053.20170208
30.    De SS. Khambete MP. Degani MS. Oxadiazole scaffolds in anti-tuberculosis drug discovery. Bioorganic and Medicinal Chemistry Letters. 2019; 29(16):1999-2007. doi: https://doi.org/10.1016/j.bmcl.2019.06.054
31.    Verma SK. Verma R. Verma S. Vaishnav Y. Tiwari SP. Rakesh KP. Anti-tuberculosis activity and its structure-activity relationship (SAR) studies of oxadiazole derivatives: A key review. European Journal of Medicinal Chemistry. 2021; 209:112886. doi: https://dx.doi.org/10.1016/j.ejmech.2020.11288
32.    Subramnian G. Rajagopal K. Sherin F. Molecular Docking Studies, In-silico ADMET Screening of Some Novel Thiazolidine Substituted Oxadiazoles as Sirtuin 3 Activators Targeting Parkinson's Disease. Research Journal of Pharmacy and Technology. 2020; 13(6):2708-14. doi: https://doi.org/10.5958/0974-360X.2020.00482.5
33.    Aggarwal S. Goyal A. Kaur R. Synthetic procedures and pharmacological activities of 1, 2, 4-oxadiazoles-a review. Research Journal of Pharmacy and Technology. 2020; 13(10):5026-33. doi: https://doi.org/10.5958/0974-360X.2020.00880.X
34.    Vora PK. Somani RR. Parab SS. Patil PM. Greener Synthesis of some Bioactive 2, 5-Disubstituted-1, 3, 4-Oxadiazoles. Research Journal of Pharmacy and Technology. 2016; 9(9):1433-40. doi: https://doi.org/10.5958/0974-360X.2016.00277.8
35.    Abood ZH, Suhail HA, Chafcheer ZK. Synthesis of 1, 3-Benzoxazepine-1, 5-diones containing Oxadiazole unit with Assessment of their verves Athwart Bacteria. Research Journal of Pharmacy and Technology. 2021; 14(4):1837-41. doi: https://doi.org/10.52711/0974-360X.2021.00416
36.    Kerru N. Singh-Pillay A. Awolade P. Singh P. Current anti-diabetic agents and their molecular targets: A review. European Journal of Medicinal Chemistry. 2018; 152:436-88. doi: https://doi.org/10.1016/j.ejmech.2018.04.061
37.    Marzullo P. Pace A. Pibiri I. Piccionello AP. Buscemi S. Recent advances on 1, 2, 4-oxadiazoles: from synthesis to reactivity and pharmaceutical applications. Targets Heterocycl Syst. 2020; 24:377–97. doi: https://dx.doi.org/10.17374/targets.2021.24.377
38.    Gani RS. Kudva AK. Timanagouda K. Mujawar SB. Joshi SD. Raghu SV. Synthesis of novel 5-(2, 5-bis (2, 2, 2-trifluoroethoxy) phenyl)-1, 3, 4-oxadiazole-2-thiol derivatives as potential glucosidase inhibitors. Bioorganic Chemistry. 2021; 114:105046. doi: https://doi.org/10.1016/j.bioorg.2021.105046
39.    Radia AJ. Lalpara JN. Modasiya IJ. Dubal GG. Design and synthesis of novel 1, 3, 4‐oxadiazole based azaspirocycles catalyzed by NaI under mild condition and evaluated their antidiabetic and antibacterial activities. Journal of Heterocyclic Chemistry. 2021; 58(2):612-21. doi: https://dx.doi.org/10.1002/jhet.4200
40.    Kaur P. Bhat ZR. Bhat S. Kumar R. Kumar R. Tikoo K. Gupta J et al. Synthesis and evaluation of new 1, 2, 4-oxadiazole based trans-acrylic acid derivatives as potential PPAR-alpha/gamma dual agonist. Bioorganic Chemistry. 2020; 100:103867. doi: https://doi.org/10.1016/j.bioorg.2020.103867
41.    Khosravi A, Vaezi G, Hojati V, Abdi K. Study on the interaction of triaryl-dihydro-1, 2, 4-oxadiazoles with α-glucosidase. DARU Journal of Pharmaceutical Sciences. 2020; 28(1):109-17. doi: https://dx.doi.org/10.1007/s40199-019-00322-y
42.    Taha M, Rahim F, Imran S, Ismail NH, Ullah H, Selvaraj M, Javid MT, Salar U, Ali M, Khan KM. Synthesis, α-glucosidase inhibitory activity and in silico study of tris-indole hybrid scaffold with oxadiazole ring: As potential leads for the management of type-II diabetes mellitus. Bioorganic chemistry. 2017; 74:30-40. doi: https://doi.org/10.1016/j.bioorg.2017.07.009
43.    Taha M, Ismail NH, Jamil W, Imran S, Rahim F, Kashif SM, Zulkefeli M. Synthesis of 2-(2-methoxyphenyl)-5-phenyl-1, 3, 4-oxadiazole derivatives and evaluation of their antiglycation potential. Medicinal Chemistry Research. 2016; 25(2):225-34. doi: 10.1007/s00044-015-1476-8
44.    Kashtoh H, Hussain S, Khan A, Saad SM, Khan JA, Khan KM, Perveen S, Choudhary MI. Oxadiazoles and thiadiazoles: novel α-glucosidase inhibitors. Bioorganic and medicinal chemistry. 2014; 22(19):5454-65. doi: https://doi.org/10.1016/j.bmc.2014.07.032
45.    Purohit SS, Veerapur VP. Synthesis and predicting the possibility of 2, 5-disubstituted-1, 3, 4-oxadiazole derivatives as GSK-3 inhibitors. International Journal of Pharmaceutical Sciences and Research. 2012;3(11):4412-20. doi: http://dx.doi.org/10.13040/IJPSR.0975-8232.3(11).4412-20

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available