Author(s): Budi Santosa, Anak Agung Ayu Eka Cahyani, Ana Hidayati Mukaromah, Purwanto Adhipireno, Rr. Annisa Ayuningtyas, Fitriani Nur Damayanti, Sandeep Poddar


DOI: 10.52711/0974-360X.2023.00457   

Address: Budi Santosa1, Anak Agung Ayu Eka Cahyani1*, Ana Hidayati Mukaromah1, Purwanto Adhipireno2, Rr. Annisa Ayuningtyas3, Fitriani Nur Damayanti4, Sandeep Poddar5
1Department of Medical/Clinical Laboratory Science, Universitas Muhammadiyah, Semarang, Indonesia.
2Head of Clinical Pathology subspecialist program, Medical faculty, Diponegoro University, Semarang, Indonesia.
3Nutrition Science, Faculty of Nursing and Health Sciences, Universitas Muhammadiyah Semarang, Indonesia.
4Department of Midwifery, Faculty of Nursing and Health Science, Universitas Muhammadiyah Semarang, Semarang, Indonesia.
5Lincoln University College, Wisma Lincoln, No. 12-18, Jalan 55 6/12, 47301 Petaling Jaya, Selangor D. E., Malaysia.
*Corresponding Author

Published In:   Volume - 16,      Issue - 6,     Year - 2023

Introduction: This study aimed to assess the effects of increasing biotin concentrations on lipid profiles, CRP, and foam cells in Wistar rats with dyslipidemia risks. Materials and Methods: Thirty male Wistar rats (weighing 150-200grams) were divided into five groups and adapted for seven days. The negative control group received standard feed, while the positive control group received a high-fat diet. The treatment groups 1, 2, and 3 received a high-fat diet and biotin at different doses: 1.232mg/kg, 68.39mg/kg, and 97.72mg/kg, respectively, for six weeks. This study employed the colorimetric enzymatic method to examine the lipid profiles, a qualitative approach to examine the CRP, and painting Oil Red O and HE on histology slides to count the foam cells. Results: The negative control group indicated normal levels of lipid profiles and foam cells. The positive control group showed increased lipid profile levels and foam cells. Meanwhile, the treatment groups receiving an increase in biotin concentration showed a decreasing pattern of the foam cells, and their lipid profile levels (total cholesterol, triglycerides, and LDL) decreased. However, the HDL did not reduce. The results of all groups' CRP were negative. The one-way ANOVA test showed significance for the levels of total cholesterol, triglycerides, and LDL. The Kruskal-Wallis test was significant for the number of foam cells (a confidence level of 95%). Conclusion: The biotin treatment significantly improves Wistar rats' lipid profiles and the number of foam cells. However, the doses did not statistically affect the levels of HDL and CRP.

Cite this article:
Budi Santosa, Anak Agung Ayu Eka Cahyani, Ana Hidayati Mukaromah, Purwanto Adhipireno, Rr. Annisa Ayuningtyas, Fitriani Nur Damayanti, Sandeep Poddar. Effect of Biotin Treatment on the improvement of Lipid Profile and Foam Cells in Dyslipidemia rats. Research Journal of Pharmacy and Technology 2023; 16(6):2779-5. doi: 10.52711/0974-360X.2023.00457

Budi Santosa, Anak Agung Ayu Eka Cahyani, Ana Hidayati Mukaromah, Purwanto Adhipireno, Rr. Annisa Ayuningtyas, Fitriani Nur Damayanti, Sandeep Poddar. Effect of Biotin Treatment on the improvement of Lipid Profile and Foam Cells in Dyslipidemia rats. Research Journal of Pharmacy and Technology 2023; 16(6):2779-5. doi: 10.52711/0974-360X.2023.00457   Available on:

1.    Ontario HQ. Frequency of Testing for Dyslipidemia: An Evidence-Based Analysis. Ont Health Technol Assess Ser. 2014;14(6):1–30.
2.    Garg A. Dyslipidemias: Pathophysiology, Evaluation and Management (Contemporary Endocrinology). 2015th ed. Garg A, editor. Humana; 2015.
3.    Kwiterovich PO. The John Hopkins Textbook of Dyslipidemia. 1st ed. Lippincott Williams & Wilkins; 2012. 320 p.
4.    Dehghani S, Mehri S, Hosseinzadeh H. The effects of crataegus pinnatifida (Chinese hawthorn) on metabolic syndrome: A review. Iran J Basic Med Sci. 2019;22(5):460–8.
5.    Kopin L, Lowenstein C. Dyslipidemia. Ann Intern Med. 2017;167(11):81–96.
6.    Pahlavanzade B, Zayeri F, Baghfalaki T, Mozafari O, Khalili D, Azizi F, et al. Association of lipid markers with coronary heart disease and stroke mortality: A 15-year follow-up study. Iran J Basic Med Sci. 2019;22(11):1325–30.
7.    Badimon L, Padró T, Vilahur G. Atherosclerosis, platelets and thrombosis in acute ischaemic heart disease. Eur Hear J Acute Cardiovasc Care. 2012;1(1):60–74.
8.    Chistiakov DA, Melnichenko AA, Myasoedova VA, Grechko A V, Orekhov AN. Mechanisms of foam cell formation in atherosclerosis. J Mol Med. 2017;95(11):1153–65.
9.    Nai T, Yulianti R, Likhayati W, Setyaningsih Y. Comparison Of The Effectiveness Of Physical Training And Extract Of Soursop Leaf To Histopathology Of Abdominal Aorta Foam Cells In Hipercolesterolemia- Diabetes. Vol. 3, ActaBiolna. 2020. 37–50 p.
10.    Koenig W. High-sensitivity C-reactive protein and atherosclerotic disease: from improved risk prediction to risk-guided therapy. Int J Cardiol. 2013;168(6):5126–34.
11.    Ingle P V, Patel DM. C- reactive protein in various disease condition - an overview. Asian J Pharm Clin Res. 2011;4(1):9–13.
12.    Sproston NR, Ashworth JJ. Role of C-reactive protein at sites of inflammation and infection. Front Immunol. 2018;9(APR):1–11.
13.    Singh SK, Agrawal A. Functionality of C-reactive protein for atheroprotection. Front Immunol. 2019;10(JULY):1–8.
14.    Patel DP, Swink SM, Castelo-Soccio L. A Review of the Use of Biotin for Hair Loss. Ski Appendage Disord. 2017;3(3):166–9.
15.    Ardabilygazir A, Afshariyamchlou S, Mir D, Sachmechi I. Effect of High-dose Biotin on Thyroid Function Tests: Case Report and Literature Review. Cureus. 2018;10(6):1–5.
16.    Fernandez-Mejia C, Lazo-de-la-Vega-Monroy ML. Biological effects of pharmacological concentrations of biotin. Complement Health Pract Rev. 2011;16(1):40–8.
17.    Asvini N. Evaluation of the Effect of Biotin in Dyslipidemia. 2015.
18.    Said HM. Biotin: biochemical, physiological and clinical aspects. Subcell Biochem. 2012;56:1–19.
19.    Monsalve CR, Ruiz IZ, Andrade S, Saldana AB, Garibay MAP, Quiroz PM, et al. Biotin supplementation reduces plasma triacylglycerol and VLDL in type 2 diabetic patients and in nondiabetic subjects with hypertriglyceridemia. Biomed Pharmacother. 2006;60(4):182–5.
20.    Asvini N, Hemavathy G, Vasanthira K. Combination Of Biotin With Atorvastatin Achieves Favourable Total Cholesterol : Hdl Ratio In Secondary Dyslipidemia : A Single Centre , Prospective , Open Label , Parallel Group , Comparative Study . 2016;6(4):34–40.
21.    Hemalatha K, Girija K. Evaluation of drug candidature of some benzimidazole derivatives as biotin carboxylase inhibitors: molecular docking and insilico studies. Asian J. Res. Pharm. Sci. 2016 Jan;6(1):15-20.
22.    Hemalatha K, Raj DN, Begam MF, Sharanya VK, Girija K. Synthesis, Characterization, Docking study and Anti-Bacterial Evaluation of Benzimidazole Derivatives as Biotin Carboxylase Inhibitors. Asian Journal of Pharmacy and Technology. 2017;7(2):109-14.
23.    Gupta A, Das SK, Banik AK. Improved Production of L-Lysine by Immobilized Biotin Auxotropic Mutant Micrococcus glutamicus AB200. Asian Journal of Research in Chemistry. 2013 Jul 28;6(7):613-7.
24.    Patel HH, Bhagat VC, Shete RV, Ravetkar AS. Analytical Method Development and Validation for biotin from Premixes (solid blend of Multi-Vitamin) by RP-HPLC. Research Journal of Pharmacy and Technology. 2020 Mar 1;13(3):1314-8.
25.    Savitha K, Ravichandran S. Method Development and Validation for Simulataneous Estimation of Biotin and Folic Acid in Bulk and Tablet dosage form by RP-HPLC. Research Journal of Pharmacy and Technology. 2020 Nov 1;13(11):5289-92.
26.    Panaskar SN, Yadav D, Singh SK, Hampe MH, Shivalkar A. Enhancement of Biotinidase activity in dried blood spot by Disulfide Reducing Reagent and Comparative Evaluation with Reference Method. Asian Journal of Research in Chemistry. 2019 Nov 7;12(6):366-71.
27.    Ganguly S, Satapathy KB. Selection of Suitable Maintenance Medium and Determination of Auxotrophic Nature of the Multiple Analogue Resistant Mutant Micrococcus glutamicus X^ sub 300^ for L-methionine Fermentation. Research Journal of Pharmacy and Technology. 2013 Dec 1;6(12):1319.
28.    Pavithra R, Hemalatha K, Girija K. Eco-Friendly Synthesis, Characterization, Docking and Anti-Bacterial activity of Mannich Base Substituted Benzimidazoles. Research Journal of Pharmacy and Technology. 2017;10(10):3346-52.
29.    Panchabhai VB, Butle SR, Ingole PG. Synthesis, characterization and molecular docking studies on some new N-substituted 2-phenylpyrido [2, 3-d] pyrimidine derivatives. Research Journal of Pharmacy and Technology. 2021 Jul 1;14(7):3846-54.
30.    Larrieta E, Velasco F, Vital P, López-Aceves T, María Luisa Lazo-de-la-Vega-Monroy AR, Fernandez-Mejia C. Pharmacological concentrations of biotin reduce serum triglycerides and the expression of lipogenic genes. 2010;644:1–3.
31.    Aguilera-Méndez A, Fernández-Mejía C. The hypotriglyceridemic effect of biotin supplementation involves increased levels of cGMP and AMPK activation. Biofactors. 2012;38(5):387–94.
32.    Boone-Villa D, Aguilera-Méndez A, Miranda-Cervantes A, Fernandez-Mejia C. Effects of Biotin Supplementation in the Diet on Adipose Tissue cGMP Concentrations, AMPK Activation, Lipolysis, and Serum-Free Fatty Acid Levels. J Med Food. 2015;18(10):1150–6.
33.    Moreno‐Méndez E, Hernández‐Vázquez A, Fernández‐Mejía C. Effect of biotin supplementation on fatty acid metabolic pathways in 3T3‐L1 adipocytes. Ericka Moreno‐Méndez Alain Hernández‐Vázquez Cris Fernández‐Mejía. 2019;45(2):259–70.
34.    Orhan C, Kucuk O, Tuzcu M, Sahin N, Komorowski JR, Sahin K. Effect of supplementing chromium histidinate and picolinate complexes along with biotin on insulin sensitivity and related metabolic indices in rats fed a high-fat diet. Food Sci Nutr. 2019;7(1):183–94.
35.    Hau J, Hoosier GL Van. Handbook of Laboratory Animal Science. 2nd ed. Hau J, editor. Handbook of Laboratory Animal Science. New York: CRC PRESS Boca; 2003. 333–356 p.
36.    Suvarna SK, Layton C, Bancroft JD. Theori and Practice of Histological Techniques. 8th ed. Elsevier. 2018. 126–138 p.
37.    Luan YY, Yao YM. The clinical significance and potential role of C-reactive protein in chronic inflammatory and neurodegenerative diseases. Front Immunol. 2018;9(JUN):1–8.
38.    Yu Q, Li Y, Wang Y, Zhao S, Yang P, Chen Y, et al. C-reactive protein levels are associated with the progression of atherosclerotic lesions in rabbits. Histol Histopathol. 2012;27(4):529–35.
39.    Fu Y, Wu Y, Liu E. C reactive protein and cardiovascular disease: From animal studies to the clinic (Review). Exp Ther Med. 2020;20(2):1211–9.
40.    Aster VKAAJ. Robbins and Cotran Pathologic Basis of Disease [Internet]. Ed. 9th, editor. Elsevier Inc; 2015. 491–501 p.
41.    Ference BA, Ginsberg HN, Graham I, Ray KK, Packard CJ, Bruckert E, et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement fromthe European Atherosclerosis Society Consensus Panel. Eur Heart J. 2017;38(32):2459–72.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

56th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Recent Articles


Not Available