Author(s):
Lilik Maslachah, Neny Purwitasari
Email(s):
lilik.maslachah@yahoo.com
DOI:
10.52711/0974-360X.2023.00702
Address:
Lilik Maslachah1*, Neny Purwitasari2
1Departement of Basic Veterinary Medicine, Veterinary Pharmacy, Faculty of Veterinary Medicine Universitas
Airlangga, Surabaya 60115 Indonesia.
2Departement of Pharmacognosy, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115 Indonesia.
*Corresponding Author
Published In:
Volume - 16,
Issue - 9,
Year - 2023
ABSTRACT:
The purpose of this study is to prove the antimalarial activity of nanophytomedicine fraction Syzygium cumini fruit in rodent malaria. Preparation of nanoparticle formulations using ionic gelation. This research used 80 mice divided into 8 groups. K: not infected, K-: infected, P1: infected+chloroquine, P2: infected+fraction, P3, P4, P5, were infected + nanoparticles, and P6 were infected + nanoparticles combined with chloroquine. Mice were infected with red blood cells containing 1x106 in 0.2ml P.berghei. Treatment for 4 days and 24hours post-infection. On the 8th day, post-infection blood and organs were collected. The results showed the body weight of mice showed a decrease except for the P1 and P6 groups. Increased % parasitemia and decreased parasite growth inhibition in group K- compared to P1, P6, and P5. The splenic index of the K group was significantly different from the other groups. The hepatic index of the K group was not significantly different from the P1 and P6 groups, but significantly different from the other groups. The hematological changes of hemoglobin and hematocrit in groups K- and P3 showed a decrease. Leukocytes, monocytes, and granulocytes in all groups were in the normal range. The conclusion is Nanoparticles fraction of Syzygium cumini at a dose of 400 mg/kg BW and combination therapy with chloroquine have better potential as an antimalarial seen from the decreased parasitemia, increased inhibition of parasite growth, increased body weight, splenic index, hepatic index and Hematological changes of mice infected with Plasmodium berghei.
Cite this article:
Lilik Maslachah, Neny Purwitasari. Antimalarial Activity of Nano Phytomedicine Fraction of Syzygium cumini Fruit in Rodent Malaria. Research Journal of Pharmacy and Technology 2023; 16(9):4288-4. doi: 10.52711/0974-360X.2023.00702
Cite(Electronic):
Lilik Maslachah, Neny Purwitasari. Antimalarial Activity of Nano Phytomedicine Fraction of Syzygium cumini Fruit in Rodent Malaria. Research Journal of Pharmacy and Technology 2023; 16(9):4288-4. doi: 10.52711/0974-360X.2023.00702 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2023-16-9-46
REFERENCES:
1. World Health Organization: World Malaria Report. ISBN 978-92-4-156572-1. 2019;45-56.
2. Good MF, Doolan DL. Malaria Vaccine Design. Immunological Consideration. Immunity, 2018; 33 (4): 555-566. doi:10.1016/j.immuni.2010.10.005
3. Prerana Sensharma, K. Anbarasu, S. Jayanthi. In silico Identification of Novel Inhibitors against Plasmodium falciparum Triosephosphate Isomerase from Anti-Folate Agents. Research J. Pharm. and Tech. 2018; 11(8): 3367-3370
4. Jeyabaskar Suganya, Mahendran Radha, Hubert. Computational studies on Differential gene Expression in Malaria Microarray Dataset. Research J. Pharm. and Tech. 2020; 13(3): 1368-1376.
5. Mathur M And Govind V. Role of Nanoparticles for Production of Smart Normal Drug. Overview Indian Journal of Natural Products and Resources. 2013; 4(4):329-33. doi: Int. cl. (2011.01)−A61K 36/00
6. Zhang LL, Lin YM. Antioksidant Tannins from Syzygium cumini Fruit. African Journal of Biotechnology. 2009; 8(10):2301-2309. doi:ajol.info/index.php/ajb/article/view/60578
7. Maslachah L and Sugihartuti R. Potency Syzygium cumini L as Adjuvant Therapy on Mice Model Malaria. Iraqi Journal of Veterinary Sciences. 2018; 31(1):73-80. doi.10.33899/ijvs.2018.15380.
8. Maslachah L. Sugihartuti R, Wahyuni SR, Yustinasari RL. Adjuvant Therapy of Syzygium cumini Leaf and Fruit Extract Nanoparticles in Mice (Mus musculus) Infected by Plasmodium berghei. Indian Vet. J. 2020; 97 (02) : 33 – 36.
9. Craig, Alister G, Georges E, Grau, Chris Janse, James W, Kazura, Dan Milner, John W, Barnwell, Gareth Turner, Jean Langhorne. The Role of Animal Models for Research on Severe Malaria. PLoS Pathogens. 2012; 8(2):e1002401. doi: 10.1371/journal.ppat.1002401
10. Amadi OK, Otuokere IE, Bartholomew CF. Synthesis, Characterization, in vivo Antimalarial Studies and Geometry Optimization of Lumefantrine/Artemether Mixed Ligand Complexes. Res. J. Pharm. Dosage Form. and Tech. 7(1): Jan.-Mar. 2015; Page 59-68. doi: 10.5958/0975-4377.2015.00009.9
11. Ljungstrom I, Perlmann H, Schlictherle M, Scherf A, Wahlgren M. Methods in Malaria Research 4th ed. 2004; 1-240.
12. Garcia CR, MF. De Azevedo G, Wunderlich A, Budu JA, Young And L Bannister: Plasmodium in the Post Genomic Era: New Insight Into Moleculer Cell Biology of Malaria Parasites. Int. Rev. Cell Mol Biol. 2008; 266: 8. doi: 10.1016/S1937-6448(07)66003-1
13. Rini Hamsidi, Wahyuni, Adryan Fristiohady, Muhammad Hajrul Malaka, Idin Sahidin, Wiwied Ekasari, Aty Widyawaruyanti, Ahmad Fuad Hafid. Steroid Compounds Isolation from Carthamus tinctorius Linn as Antimalarial. Research Journal of Pharmacy and Technology. 2021; 14(10):5297-4.
14. Tadesse SA, Wubneh ZB. Antimalarial Activity of Syzygium guineense During Early and Established Plasmodium in Infection in Rodent Models. Biomed Central. Complementary and Alternative Medicine. 2017;17:21. doi.10.1186/s12906-016—1538-6
15. Tiyaboonchai W. Chitosan Nanoparticles: A Promising System for Drug Delivery. Naresuan University Journal. 2003; 11(3):51-66. doi:10.1.1.460.1550&rep=rep1&type=pdf
16. Bahari LA, Hamishekar H. The Impact of Variables on Particle Size of Solid Lipid Nanoparticles and Nanostructured Lipid Carriers. A Comparative Literature Review. Adv. Pharm. Bull. 2016; 6:143. doi: 10.15171/apb.2016.021
17. Anstey NM, Russell B, Yeo TW, Price RN. The Pathophysiology of Vivax Malaria. Trend Parasitol. 2009; 25: 220-7. doi:10.1016/j.pt.2009.02.003
18. Storm J, Craig AG. Pathogenesis of Cerebral Malaria Inflammation and Cytoadherence. Front Cellular Infect Microbiol. 2014; 4:100. doi: 10.3389/fcimb.2014.00100
19. Krushna K. Zambare, Avinash B. Thalkari, Nagesh S. Tour. A Review on Pathophysiology of Malaria: A Overview of Etiology, Life Cycle of Malarial Parasite, Clinical Signs, Diagnosis and Complications. Asian J. Res. Pharm. Sci. 2019; 9(3):226-230.
20. Coban C. The Host Targeting Effect of Chloroquine in Malaria. Current Opinion in Immunology. 2020; 66:98–107. doi :10.1016/j.coi.2020.07.005
21. Prato And Giribaldi. New Perspectives for Adjuvant Therapy in Severe Malaria. J Bacteriol Parasitol. 2012; 3:5. doi: 10.4172/2155-9597.1000e105
22. Priya SH, Prakasan N, Purushothaman J. Antioxidant Activity Phenolic Flavonoid Content and Highperformance Liquid Chromatography Profiling of Three Different Variants of Syzygium cumini Seeds. A Comparative Study Journal of Intercultural Ethnopharmacology. 2017; 16(1):107. doi: 10.5455/jice.20161229055555
23. Varo L, Crowley VM, Madrid S, Madrid L, Serghides L, Kain KC And Quique Bassat Q. Adjunctive Therapy for Severe Malaria: A Review and Critical Appraisal. Malar J. 2018; 17:47. doi: 10.1186/s12936-018-2195-7
24. Bero J, Federich M, Leclercq JQ. Antimalarial Compounds Isolated from Plants Used in Traditional Medicine. J. Pharm Pharmacol. 2009; 61(11):1401-33. doi:10.1211/jpp/61.11.0001
25. Preethimol Francis, Suseem SR. Antimalarial Potential of Isolated Flavonoids-A Review. Research J. Pharm. and Tech. 2017; 10(11): 4057-4062.
26. Faizal Hermanto, Anas Subarnas, Afifah B. Sutjiatmo, Afiat Berbudi. Apigenin: Review of Mechanisms of Action as Antimalarial. Research Journal of Pharmacy and Technology. 2022; 15(1):458-6.
27. Nilesh Mandloi, Rajesh Sharma, Jitendra Sainy, Swaraj Patil. Exploring Structural Requirement for Design and Development of compounds with Antimalarial Activity via CoMFA, CoMSIA and HQSAR. Research J. Pharm. and Tech. 2018; 11(8): 3341-3349.
28. Lilik Maslachah, Thomas V Widiyatno, Nusdianto Triakoso, Suwarno, Koesnoto P, Nanda Ayu Narulita, Mahendra Pujiyanto, Zerlinda Dyah Ayu, Dita Nurkurnia Putri. Adjuvant Therapy of Syzygium cumini Leaf and Fruit Extract Nanoparticles to Histopathological Changes of Mice Organ with Malaria. Research Journal of Pharmacy and Technology. 2022; 15(1):389-4.
29. Kim NH, Lee KH, Jeon YS, Cho SG, Kim JH. Spontaneous Splenic Rupture in Vivax Malaria Case Treated with Transcatheter Coil Embolization of the Splenic Artery. Korean J. Parasitol. 2015; 53(2). 215-218. doi: 10.3347/kjp.2015.53.2.215
30. Akinosoglou KS, Solomou EE, Gogos CA. Malaria: A Haematological Disease. Hematology. 2013; 17(2):106-114. doi:10.1179/102453312X13221316477336
31. Pragya Gajendra, Mitashree Mitra. Association of Thrombocytopenia with Severity of Plasmodium falciparum Malaria: A Study in Chhattisgarh. Research J. Pharm. and Tech. 7(9): Sept. 2014 Page 1029-1033.
32. Wilson S, Jones FM, Mwatha JK, Kimani G, Booth M, Kariuki HC, Vennervald BJ. Hepatosplenomegaly Associated with Chronic Malaria Exposure : Evidence for a Pro Inflammatory Mechanism Exacerbated by Chistosomiasis. Parasite Immunology. 2009; 31: 64-71. doi: 10.1111/j.1365-3024.2008.01078.x
33. Queiroz NL, Riteau N, Eastman RT, Bock KW, Orandle MS, Moore IN, Sher A, Long CA, Jankovic D And Su XZ. Mechanism of Splenic Cell Death and Host Mortality in Malaria Model. Scientific Reports. 2017; 7:10438. doi: 10.1038/s41598-017-10776-2
34. Chang KH, Stevenson MM. Malarial Anaemia: Mechanisms and Implications of Insufficient Erythropoiesis During Bloodstag: Malaria. Int J Parasitol. 2004; 34(13–14):1501–1516. doi: 10.1016/j.ijpara.2004.10.008
35. Haldar K, Mohandas N. Malaria Erytrocytic Infection and Anemia. Hematology Am Soc Hematol Educ Program. 2009; 87–93. doi:10.1182/asheducation-2009.1.87.87-93