Author(s): Erly Sintya, Sri Agung Aryastuti, Pande Ayu Naya Kasih Permatananda, Agung Wiwiek Indrayani


DOI: 10.52711/0974-360X.2023.00716   

Address: Erly Sintya1*, Sri Agung Aryastuti1, Pande Ayu Naya Kasih Permatananda1, Agung Wiwiek Indrayani2
1Faculty of Medicine and Health Sciences, Universitas Warmadewa, Indonesia, 80234.
2Faculty of Medical and Health Sciences, Universitas Udayana, Indonesia, 80232.
*Corresponding Author

Published In:   Volume - 16,      Issue - 9,     Year - 2023

Plants from the genus Ocimum belonging to the family Lamiaceae (Ordo Lamiales), also known as tulsi, are widely distributed in tropical, subtropical, and warm climates throughout the world, and are among the types of medicinally effective herbal plants. Tulsi is referred to as the "Herbal Queen" because of its reputation for producing aromatic oils. In India, this plant is primarily grown at home for religious purposes and temple offerings. In traditional Indian medicine, plants of the genus Ocimum are widely employed. The tulsi plant is not commonly used as an alternative to herbal medicine in Bali, and there is a dearth of literature describing its chemical constituents and secondary metabolites. In addition, the secondary metabolites of tulsi plants growing in India and Bali are influenced by the distinct geographical conditions of their respective growing environments. This study intends to evaluate the secondary metabolite chemicals and biological aspects of Bali-grown tulsi plants. Synthesis of simplicia, followed by maseration, evaporation, and GC-MS analysis, is used to evaluate the chemical structure of secondary metabolites in tulsi extract.In this study, ethanol (polar) and chloroform (semi-polar) were employed to isolate secondary metabolites with varying degrees of polarity. Chloroform solvent successfully isolated secondary metabolites at high concentrations, including Eugenol, Copaene, Cyclohexane, Caryophyllene, Humulene, Germacrene D, Naphthalene, Caryophyllene oxide, Phthalic acid, 9,12,15-Octadecatrienoic acid, Dibutyl phthalate, and Caryophyllene oxide (linolenic acid). While the ethanol extract could only isolate Eugenol, Alpha-Copaene, Cyclohexane, Caryophyllene, Germacrene D, and N-Desmethyltapentol. The potential biological effects as natural antibacterial and antifungal agents of the identified compounds in both extracts are highlighted. Our findings support the use of both extracts to treat comparable medical conditions, including bacterial and fungal infections, as supported by empirical evidence. Due to their antiseptic, analgesic, anti-inflammatory, antibacterial, immunomodulatory, hypoglycemic, hypotensive, cardioprotective, and antioxidant properties, numerous secondary metabolites in these two forms of tulsi extract have the potential to be developed as therapeutic agents.

Cite this article:
Erly Sintya, Sri Agung Aryastuti, Pande Ayu Naya Kasih Permatananda, Agung Wiwiek Indrayani. Relative GC-MS Examination of Biological Activity Constituents of Ocimum tenuiflorum Extracts. Research Journal of Pharmacy and Technology 2023; 16(9):4377-3. doi: 10.52711/0974-360X.2023.00716

Erly Sintya, Sri Agung Aryastuti, Pande Ayu Naya Kasih Permatananda, Agung Wiwiek Indrayani. Relative GC-MS Examination of Biological Activity Constituents of Ocimum tenuiflorum Extracts. Research Journal of Pharmacy and Technology 2023; 16(9):4377-3. doi: 10.52711/0974-360X.2023.00716   Available on:

1.    Gandla K, Kumar DS, Praveen J, Suman E. RP-HPLC Method Development and Validation for Simultaneous Estimation of Lignocaine Hydrochloride and Clotrimazole Hydrochloride in Ear Drops. Asian J Pharm Anal. 2017;7(3):163. doi:10.5958/2231-5675.2017.00026.6
2.    Ahmad S. Recent Advances in the Chemical, Manufacturing and Regulatory Aspects of Phytopharmaceuticals. Asian J Res Pharm Sci. 2017;7(4):212. doi:10.5958/2231-5659.2017.00033.9
3.    Piras A, Gonçalves MJ, Alves J, et al. Ocimum tenuiflorum L. and Ocimum basilicum L., two spices of Lamiaceae family with bioactive essential oils. Ind Crops Prod. 2018;113:89-97. doi:10.1016/J.INDCROP.2018.01.024
4.    Balaji EV, Selvan AT, Srinivasan A, Nandhini S.  Punica granatum root (s): Phytocompounds analysis, Anti-oxidant and Anti-microbial activity . Asian J Pharm Anal. 2019;9(3):123. doi:10.5958/2231-5675.2019.00023.1
5.    Nikam SR, Jagdale AS, Boraste SS, Patil SB. Bioanalysis - Method Development, Validation, Sample Preparation, its Detection Techniques and its Application. Asian J Pharm Anal. November 2021:297-305. doi:10.52711/2231-5675.2021.00051
6.    G SK, Noorjahan, Reddy GS, Mujahid SK, Ashwini T, Chary VM. Extraction, Phytochemical Studies and In–Vitro Screening of the Leaves and Flowers of Crossandra infundibuliformis against Mycobacterium tuberculosis. Asian J Res Pharm Sci. 2018;8(4):247-252. doi:10.5958/2231-5659.2018.00041.3
7.    Kisan Chatki P, Tabassum S. Analytical Methods of Dihydropyridines Based Calcium Channel Blockers - Amlodipine, Lacidipine, Isradipine, Nifedipine, Felodipine, Cilnidipine and its related formulations: A Review. Asian J Res Chem. June 2021:221-234. doi:10.52711/0974-4150.2021.00039
8.    P.K S, Shrikumar S. GC-MS analysis of phytocomponents in the ethylacetate extract of Mesua ferrea Linn. leaves. Asian J Pharm Anal. May 2022:121-126. doi:10.52711/2231-5675.2022.00022
9.    Sharma S, Kumar K, Thakur N, Chauhan S, Chauhan MS. Eco-friendly Ocimum tenuiflorum green route synthesis of CuO nanoparticles: Characterizations on photocatalytic and antibacterial activities. J Environ Chem Eng. 2021;9(4):105395. doi:10.1016/J.JECE.2021.105395
10.    M. K D, Shrikumar S. GC- MS Analysis of Ethylacetate extract of leaves of Clitoria ternatea Linn. Asian J Pharm Anal. March 2022:49-52. doi:10.52711/2231-5675.2022.00009
11.    K. P S, Shrikumar S. GC-MS Analysis of Ethyl acetate extract of Mansoa alliacea (Lam.) A.H. Gentry leaves. Asian J Pharm Anal. March 2022:1-5. doi:10.52711/2231-5675.2022.00001
12.    Kumar PR, Priyadarsini SS, Thirumal M.  Nitric Oxide Radical Scavenging activity of the Ethanolic and Chloroform extracts of Ocimum basilicum Linn. Leaves-A Comparative Study . Res J Pharmacogn Phytochem. 2017;9(4):215. doi:10.5958/0975-4385.2017.00039.5
13.    Sivarajan A, Shanmugapriya V.  Determination of isotherm parameters for the adsorption of Rhodamine B dye onto activated carbon prepared from Ziziphus jujuba seeds . Asian J Res Chem. 2017;10(3):362. doi:10.5958/0974-4150.2017.00062.1
14.    Nguyen CTT, Nguyen NH, Choi WS, Lee JH, Cheong JJ. Biosynthesis of essential oil compounds in Ocimum tenuiflorum is induced by abiotic stresses. 2020. doi:10.1080/11263504.2020.1857870
15.    P BS. Tulsi (Ocimum sanctum), excellent source of phytochemicals. Int J Environ Agric Biotechnol. 2018;3(5). doi:10.22161/ijeab/3.5.21
16.    Singh R, Tiwari A.  Adhatoda vasica : A Miracle and Boon for Asthmatic people-A Review . Res J Pharmacogn Phytochem. 2016;8(4):242. doi:10.5958/0975-4385.2016.00036.4
17.    Hafsa, Asfa, Rasheed N, Mohammad AS. Pharmaceutical Aids-a Review Study. Asian J Pharm Technol. 2017;7(1):1. doi:10.5958/2231-5713.2017.00001.0
18.    Marx P, Baskari S, Naik Ls, Shyam P, Marx Kp, Ramana Devi P. Antimicrobial activity and phytochemical analysis of Ocimum tenuiflorum leaf extract. Int J PharmTech Res CODEN IJPRIF. 2015;8(1):88-95. Accessed March 8, 2022.
19.    Sharma S, Kumari A, Dhatwalia J, et al. Effect of solvents extraction on phytochemical profile and biological activities of two Ocimum species: A comparative study. J Appl Res Med Aromat Plants. 2021;25:100348. doi:10.1016/J.JARMAP.2021.100348
20.    Abdou A, Idouaarame S, Salah M, et al. Phytochemical Study: Molecular Docking of Eugenol Derivatives as Antioxidant and Antimicrobial Agents. Lett Org Chem. 2022;19(9):774-783. doi:10.2174/1570178619666220111112125
21.    Perangin-Angin S, Barus SW. Synthesis of Quatenary Ammonium Compounds from Eugenol through Mannich and Methylation Reactions and Its Antibacterial Activity. Int Conf Chem Sci Technol Innov. 2019. doi:10.5220/0008879202230228
22.    Abdou A, Elmakssoudi A, El Amrani A, JamalEddine J, Dakir M. Recent advances in chemical reactivity and biological activities of eugenol derivatives. Med Chem Res 2021 305. 2021;30(5):1011-1030. doi:10.1007/S00044-021-02712-X
23.    Martins CDM, Nascimento EAD, De Morais SAL, et al. Chemical constituents and evaluation of antimicrobial and cytotoxic activities of Kielmeyera coriacea Mart. and Zucc. essential oils. Evidence-based Complement Altern Med. 2015;2015. doi:10.1155/2015/842047
24.    Saepudin A, Natawijaya D, Hartini E, Iskandar R. Evaluation of antibacterial activity of mangosteen (Garcinia mangostana L.) pericarp extract against rice leaf blight bacteria (Xanthomonas oryzae pv. oryzae) at various temperatures and durations of fruit storage. IOP Conf Ser Earth Environ Sci. 2019;250(1):012026. doi:10.1088/1755-1315/250/1/012026
25.    Mustafa NW, Kamel FH, Elia ZN. BIOLOGICAL ACTIVITY OF MYRRH EXTRACT AGAINST SOME PATHOGENIC BACTERIA: GC-MS ANALYSIS OF EXTRACT. Acad Globe Inderscience Res . 2022;3(07):83-89. doi:10.17605/OSF.IO/W6FDE
26.    Domínguez-Oliva A, Casas-Alvarado A, Miranda-Cortés AE, Hernández-Avalos I. Clinical pharmacology of tramadol and tapentadol, and their therapeutic efficacy in different models of acute and chronic pain in dogs and cats. J Adv Vet Anim Res. 2021;8(3):404. doi:10.5455/JAVAR.2021.H529
27.    Singh DR, Nag K, Shetti AN, Krishnaveni N. Tapentadol hydrochloride: A novel analgesic. Saudi J Anaesth. 2013;7(3):322. doi:10.4103/1658-354X.115319
28.    Malik S, de Mesquita LSS, Silva CR, et al. Chemical Profile and Biological Activities of Essential Oil from Artemisia vulgaris L. Cultivated in Brazil. Pharm 2019, Vol 12, Page 49. 2019;12(2):49. doi:10.3390/PH12020049
29.    Munda S, Pandey SK, Dutta S, Baruah J, Lal M. Antioxidant Activity, Antibacterial Activity and Chemical Composition of Essential Oil of Artemisia vulgaris L. Leaves from Northeast India. 2019. doi:10.1080/0972060X.2019.1602083
30.    Ibrahim Al Ahadeb J. Impact of Cinnamomum verum against different Escherichia coli strains isolated from drinking water sources of rural areas in Riyadh, Saudi Arabia. J King Saud Univ - Sci. 2022;34(2):101742. doi:10.1016/J.JKSUS.2021.101742
31.    Sumitha K V., Thoppil JE. Larvicidal efficacy and chemical constituents of O. gratissimum L. (Lamiaceae) essential oil against Aedes albopictus Skuse (Diptera: Culicidae). Parasitol Res 2015 1152. 2015;115(2):673-680. doi:10.1007/S00436-015-4786-3
32.    Coté H, Boucher M-A, Pichette A, Legault J. Anti-Inflammatory, Antioxidant, Antibiotic, and Cytotoxic Activities of Tanacetum vulgare L. Essential Oil and Its Constituents. Med 2017, Vol 4, Page 34. 2017;4(2):34. doi:10.3390/MEDICINES4020034
33.    Govindarajan M, Benelli G. α-Humulene and β-elemene from Syzygium zeylanicum (Myrtaceae) essential oil: highly effective and eco-friendly larvicides against Anopheles subpictus, Aedes albopictus, and Culex tritaeniorhynchus (Diptera: Culicidae). Parasitol Res 2016 1157. 2016;115(7):2771-2778. doi:10.1007/S00436-016-5025-2
34.    Thambi M, Shafi MP. Rhizome Essential Oil Composition of Costus Speciosus and its Antimicrobial Properties. Int J Pharm Res Allied Sci. 2015;4(1):28-32. Accessed October 9, 2022.
35.    Moussa TAA, Almaghrabi OA. Fatty acid constituents of Peganum harmala plant using Gas Chromatography–Mass Spectroscopy. Saudi J Biol Sci. 2016;23(3):397-403. doi:10.1016/J.SJBS.2015.04.013
36.    Alhaji NG, Mamani R, Alhaji NM. GC-MS analysis of phytocomponents in methanolic extract of Coleus aromaticus. ~ 106 ~ J Pharmacogn Phytochem. 2019;8(4):106-109.
37.    Chen H, Chen K, Qiu X, et al. The reproductive toxicity and potential mechanisms of combined exposure to dibutyl phthalate and diisobutyl phthalate in male zebrafish (Danio rerio). Chemosphere. 2020;258:127238. doi:10.1016/J.CHEMOSPHERE.2020.127238
38.    Thokchom SD, Gupta S, Kapoor R. Arbuscular mycorrhiza augments essential oil composition and antioxidant properties of Ocimum tenuiflorum L. – A popular green tea additive. Ind Crops Prod. 2020;153:112418. doi:10.1016/J.INDCROP.2020.112418
39.    Sahu PK, Singh S, Gupta AR, et al. Endophytic bacilli from medicinal-aromatic perennial Holy basil (Ocimum tenuiflorum L.) modulate plant growth promotion and induced systemic resistance against Rhizoctonia solani in rice (Oryza sativa L.). Biol Control. 2020;150:104353. doi:10.1016/J.BIOCONTROL.2020.104353
40.    Fidyt K, Fiedorowicz A, Strządała L, Szumny A. β-caryophyllene and β-caryophyllene oxide—natural compounds of anticancer and analgesic properties. Cancer Med. 2016;5(10):3007-3017. doi:10.1002/CAM4.816
41.    Francomano F, Caruso A, Barbarossa A, et al. β-Caryophyllene: A Sesquiterpene with Countless Biological Properties. Appl Sci 2019, Vol 9, Page 5420. 2019;9(24):5420. doi:10.3390/APP9245420
42.    Yoo HJ, Jwa SK. Inhibitory effects of β-caryophyllene on Streptococcus mutans biofilm. Arch Oral Biol. 2018;88:42-46. doi:10.1016/J.ARCHORALBIO.2018.01.009
43.    Yamaguchi M, Levy RM. β-caryophyllene promotes osteoblastic mineralization,and suppresses osteoclastogenesis and adipogenesis in mouse bone marrow cultures in vitro. Exp Ther Med. 2016;12(6):3602-3606. doi:10.3892/ETM.2016.3818/HTML

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

56th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Recent Articles


Not Available