Author(s):
Prawati Nuraini, Dimas Prasetianto Wicaksono, Ardianti Maartrina Dewi, Adinda Ayu Fitriana, Sili Han
Email(s):
prawati-n@fkg.unair.ac.id
DOI:
10.52711/0974-360X.2024.00726
Address:
Prawati Nuraini1,3, Dimas Prasetianto Wicaksono1,3, Ardianti Maartrina Dewi1,3, Adinda Ayu Fitriana2, Sili Han4,5
1Department of Pediatric Dentistry, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.
2Undergraduate Student, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.
3Academic Dental Hospital, Universitas Airlangga, Surabaya, Indonesia.
4State Key Laboratory of Oral Disease and National Clinical Hospital of Stomatology, Sichuan University, Chengdu, China.
5Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
*Corresponding Author
Published In:
Volume - 17,
Issue - 10,
Year - 2024
ABSTRACT:
Streptococcus gordonii, an early colonizing bacterium, can pave the way for subsequent oral health complications. Some studies suggest that S. gordonii may possess a mild cariogenic effect, as it facilitates the attachment of Streptococcus mutans to tooth surfaces. Biofilm adherence is the first stage in the biofilm formation process, while glycolytic pH is a crucial aspect of bacterial physiology. Numerous herbal antimicrobial agents have been investigated as alternatives to inhibit both biofilm adherence and glycolytic pH regulation in bacteria. One such agent is epigallocatechin gallate (EGCG). Previous literature has demonstrated the effectiveness of EGCG in inhibiting biofilm adherence and glycolytic pH reduction in S. mutans. This study aimed to investigate whether EGCG affects biofilm adherence and glycolytic pH in S. gordonii when cultured in Brain Heart Infusion Broth (BHIB) media. In vitro experiments were conducted using four groups of samples subjected to five treatments. The normal control group included BHIB + S. gordonii, the negative control group comprised BHIB + S. gordonii + 5% sucrose, and the treatment group comprised BHIB + S. gordonii + 5% sucrose with varying EGCG concentrations (0.03, 0.06, and 0.12 mg/mL). EGCG reduced the adherence of S. gordonii and increased glycolytic pH at an effective inhibitory concentration of 0.03 mg/mL. EGCG influences both biofilm adherence and glycolytic pH in S. gordonii.
Cite this article:
Prawati Nuraini, Dimas Prasetianto Wicaksono, Ardianti Maartrina Dewi, Adinda Ayu Fitriana, Sili Han. Effects of Epigallocatechin gallate on Biofilm adherence and Glycolytic pH in Streptococcus gordonii. Research Journal of Pharmacy and Technology. 2024; 17(10):4711-6. doi: 10.52711/0974-360X.2024.00726
Cite(Electronic):
Prawati Nuraini, Dimas Prasetianto Wicaksono, Ardianti Maartrina Dewi, Adinda Ayu Fitriana, Sili Han. Effects of Epigallocatechin gallate on Biofilm adherence and Glycolytic pH in Streptococcus gordonii. Research Journal of Pharmacy and Technology. 2024; 17(10):4711-6. doi: 10.52711/0974-360X.2024.00726 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2024-17-10-11
REFERENCES:
1. Maganti A, Goothy SSK, Goothy S, Penumatsa GS, Manyam R. Association of dental caries with difference in leucocyte count. Res J Pharm Technol. 2020; 13(2): 621–3.
2. Jain MR, Sethu G. Dental Caries and Obesity in Children of Age Groups 5–9 Years: A Preliminary Study. Res J Pharm Technol. 2015; 8(10): 1353.
3. Wicaksono DP, Washio J, Abikoa Y, Hitomi D, Nobuhiro T, Abiko Y, et al. Nitrite Production from Nitrate and Its Link with Lactate Metabolism in Oral Veillonella spp. Appl Enviromental Microbiol. 2020; 86(20): 1–9.
4. Jingga E, Setyawan H, Yuliawati S, Masyarakat FK, Diponegoro U. Hubungan Pola Pemberian Susu Formula Dengan Kejadian Early Childhood Caries (Ecc) Pada Anak Prasekolah Di Tk Islam Diponegoro Kota Semarang. J Kesehat Masy. 2019; 7(1): 131–41.
5. Raj BJR, Pradeep. Remineralising agents in dentistry. Res J Pharm Technol. 2016; 9(10): 1734–6.
6. Cai JN, Choi HM, Jeon JG. Relationship between sucrose concentration and bacteria proportion in a multispecies biofilm: Short title: Sucrose challenges to a multispecies biofilm. J Oral Microbiol [Internet]. 2021; 13(1). Available from: https://doi.org/10.1080/20002297.2021.1910443
7. Fei X, Li Y, Weir MD, Baras BH, Wang H, Wang S, et al. Novel pit and fissure sealant containing nano-CaF2 and dimethylaminohexadecyl methacrylate with double benefits of fluoride release and antibacterial function. Dent Mater [Internet]. 2020; 36(9): 1241–53. Available from: https://doi.org/10.1016/j.dental.2020.05.010
8. Schneider-Rayman M, Steinberg D, Sionov RV, Friedman M, Shalish M, Schneider-Rayman, M., Steinberg, D., Sionov, R.V., Friedman, M. and Shalish M. Effect of epigallocatechin gallate on dental biofilm of Streptococcus mutans: An in vitro study. BMC Oral Health [Internet]. 2021; Dec; 21(1): 1–11. Available from: https://doi.org/10.1186/s12903-021-01798-4
9. Farkash Y, Feldman M, Ginsburg I, Steinberg D, Shalish M. Polyphenols Inhibit Candida albicans and Streptococcus mutans Biofilm Formation. 2019; 1–10.
10. Nie M, Deng DM, Wu Y, de Oliveira KT, Bagnato VS, Crielaard W, et al. Photodynamic inactivation mediated by methylene blue or chlorin e6 against Streptococcus mutans biofilm. Photodiagnosis Photodyn Ther [Internet]. 2020; 31(May): 101817. Available from: https://doi.org/10.1016/j.pdpdt.2020.101817
11. Wu J, Yang Q, Jiang X, Fan Y, Zhang Y, Huang R. Oxyresveratrol promotes biofilm formation, cell attachment and aggregation of Streptococcus gordonii in the presence of sucrose. FEMS Microbiol Lett. 2020; 367(12): 1–8.
12. Di Martino P. Bacterial adherence: much more than a bond. AIMS Microbiol. 2018; 4(3): 563–6.
13. Nafarrate-Valdez RA, Martínez-Martínez RE, Zaragoza-Contreras EA, Áyala-Herrera JL, Domínguez-Pérez RA, Reyes-López SY, et al. Anti-Adherence and Antimicrobial Activities of Silver Nanoparticles against Serotypes C and K of Streptococcus mutans on Orthodontic Appliances. Med. 2022; 58(7).
14. Bowen WH, Burne RA, Wu H, Koo H. Oral Biofilms: Pathogens, Matrix and Polymicrobial Interactions in Microenvironments. Trends Microbiol. 2019; 26(3): 229–42.
15. Oh DH, Chen X, Daliri EBM, Kim N, Kim JR, Yoo D. Microbial Etiology and Prevention of Dental Caries: Exploiting Natural Products to Inhibit Cariogenic Biofilms. Pathogens. 2020 Jul; 9(7): 1–15.
16. Abachi S, Lee S, Rupasinghe HPV. Molecular mechanisms of inhibition of streptococcus species by phytochemicals. Vol. 21, Molecules. 2016. 1–31.
17. Park OJ, Kwon Y, Park C, So YJ, Park TH, Jeong S, et al. Streptococcus gordonii: Pathogenesis and host response to its cell wall components. Microorganisms. 2020; 8(12): 1–22.
18. World Health Organization. WHO global report on traditional and complementary medicine 2019. World Health Organization. 2019. 1–228.
19. Rabade VS, Gurunani SG, Chaple DR. Appraising herbal tea as a medicated and nutritive drink. Res J Pharm Technol. 2016; 9(5): 613–6.
20. Rosita N, Nailufa Y, Hariyadi DM. Characteristics, stability and activity of epigallocatechin gallate (EGCG)-chitosan microspheres: Effect of polymer concentration. Res J Pharm Technol. 2020; 13(5): 2303–9.
21. Singh S, Sk MF, Sonawane A, Kar P, Sadhukhan S. Plant-derived natural polyphenols as potential antiviral drugs against SARS-CoV-2 via RNA‐dependent RNA polymerase (RdRp) inhibition: an in-silico analysis. J Biomol Struct Dyn [Internet]. 2021; 39(16): 6249–64. Available from: https://doi.org/10.1080/07391102.2020.1796810
22. Setyawan EI, Setyowati EP, Rohman A, Nugroho AK. Simultaneous determination of epigallocatechin gallate, catechin, and caffeine from green tea leaves (Camellia sinensis l) extract by rp-hplc. Res J Pharm Technol. 2020; 13(3): 1489–94.
23. Avadhani KS, Amirthalingam M, Reddy MS, Udupa N, Mutalik S. Development and validation of RP-HPLC method for estimation of epigallocatechin -3-gallate (EGCG) in lipid based nanoformulations. Res J Pharm Technol. 2016; 9(6): 725–30.
24. Hermawan RW, Narmada IB, Djaharu’ddin I, Nugraha AP, Rahmawati D. The influence of epigallocatechin gallate on the nuclear factor associated t cell-1 and sclerostin expression in wistar rats (Rattus novergicus) during the orthodontic tooth movement. Res J Pharm Technol. 2020; 13(4): 1730–4.
25. Amurdhavani BS. Benefits of green tea in dentistry-a review. Res J Pharm Technol. 2015; 8(6): 772–4.
26. Patel NC, Patel AP, Patel JK. Preparation and characterization of curcumin and epigallocatechin gallate co-loaded polymeric microspheres for colonic delivery. Res J Pharm Technol. 2021; 14(10): 5077–83.
27. Han S, Abiko Y, Washio J, Luo Y, Zhang L, Takahashi N. Green Tea-Derived Epigallocatechin Gallate Inhibits Acid Production and Promotes the Aggregation of Streptococcus mutans and Non-Mutans Streptococci. Caries Res. 2021; 55(3): 205–14.
28. Tian M, Chen G, Xu J, Lin Y, Yi Z, Chen X, et al. Epigallocatechin gallate-based nanoparticles with reactive oxygen species scavenging property for effective chronic periodontitis treatment. Chem Eng J [Internet]. 2022; 433(P2): 132197. Available from: https://doi.org/10.1016/j.cej.2021.132197
29. Lashari DM, Aljunaid M, Lashari Y, Qaid HR, Ridwan RD, Diyatri I, et al. The use of mucoadhesive oral patches containing epigallocatechin-3-gallate to treat periodontitis: an in vivo study. J Taibah Univ Med Sci [Internet]. 2022; 17(6): 1014–20. Available from: https://doi.org/10.1016/j.jtumed.2022.06.006
30. Nuraini P, Puteri MM, Pramesty E. Anti-biofilm Activity of Epigallocatechin gallate (EGCG) against Streptococcus mutans bacteria. Res J Pharm Technol. 2021; Sep; 14(9): 5019–23.
31. Hasan S, Danishuddin M, Khan AU. Inhibitory effect of zingiber officinale towards Streptococcus mutans virulence and caries development: in vitro and in vivo studies. BMC Microbiol [Internet]. 2015; 15(1): 1. Available from: http://www.biomedcentral.com/1471-2180/15/1
32. Wen ZT, Scott-anne K, Liao S, De A, Luo M, Kovacs C, et al. Deficiency of BrpA in Streptococcus mutans Reduces Virulence in Rat Caries Model. Mol Oral Microbiol. 2019; 33(5): 353–63.
33. Veerapandian R, Vediyappan G. Gymnemic Acids Inhibit Adhesive Nanofibrillar Mediated Streptococcus gordonii–Candida albicans Mono-Species and Dual-Species Biofilms. Front Microbiol. 2019; 10(October): 1–15.
34. Ko EB, Kim SK, Seo HS, Yun CH, Han SH. Serine-rich repeat adhesins contribute to Streptococcus gordonii-induced maturation of human dendritic cells. Front Microbiol. 2017 Mar; 8(MAR): 523.
35. Park T, Im J, Kim AR, Lee D, Jeong S, Yun CH, et al. Short-chain fatty acids inhibit the biofilm formation of Streptococcus gordonii through negative regulation of competence-stimulating peptide signaling pathway. J Microbiol. 2021; 59(12): 1142–9.
36. Wan SX, Tian J, Liu Y, Dhall A, Koo H, Hwang G. Cross-Kingdom Cell-to-Cell Interactions in Cariogenic Biofilm Initiation. J Dent Res. 2021; 100(1): 74–81.
37. Schneider-Rayman, M., Steinberg, D., Sionov, R.V., Friedman, M. and Shalish M. Effect of epigallocatechin gallate on dental biofilm of Streptococcus mutans: An in vitro study. 2021.
38. Roy R, Tiwari M, Donelli G, Tiwari V. Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action. Virulence [Internet]. 2017; 5594(1): 00–00. Available from: https://www.tandfonline.com/doi/full/10.1080/21505594.2017.1313372
39. Nakayama M, Shimatani K, Ozawa T, Shigemune N, Tomiyama D, Yui K, et al. Mechanism for the antibacterial action of epigallocatechin gallate (EGCg) on Bacillus subtilis. Biosci Biotechnol Biochem. 2015; 79(5): 845–54.
40. Vidigal PG, Müsken M, Becker KA, Häussler S, Wingender J, Steinmann E, et al. Effects of green tea compound epigallocatechin-3-gallate against Stenotrophomonas maltophilia infection and biofilm. PLoS One. 2014; 9(4): 1–8.
41. Smitha C, Ramachandran R, Wood A, Thomas V. Insight into Oral Biofilm : Primary , Secondary and Residual Caries and Phyto- Insight into Oral Biofilm: Primary, Secondary and Residual Caries and Phyto-Challenged Solutions. 2017; (August).
42. Liu Y, Han L, Yang H, Liu S, Huang C. Effect of apigenin on surface-associated characteristics and adherence of streptococcus mutans. Dent Mater J. 2020; 39(6): 933–40.
43. Kong C, Zhang H, Li L, Liu Z. Effects of green tea extract epigallocatechin-3-gallate (EGCG) on oral disease-associated microbes: a review. J Oral Microbiol [Internet]. 2022; 14(1). Available from: https://doi.org/10.1080/20002297.2022.2131117
44. Robertsson C, Svensäter G, Blum Z, Wickström C. Intracellular Ser/Thr/Tyr phosphoproteome of the oral commensal Streptococcus gordonii DL1. BMC Microbiol. 2020; 20(1).
45. Hasan S, Singh K, Danisuddin M, Verma PK, Khan AU. Inhibition of major virulence pathways of Streptococcus mutans by Quercitrin and Deoxynojirimycin: A synergistic approach of infection control. PLoS One. 2014; 9(3).