Author(s):
Waill Elkhateeb, Ahmed Faried, Dina E. El-Ghwas, Marwa O. Elnahas, Ibrahim Nafady, Ghoson Daba
Email(s):
dinaelghwas7781@yahoo.com
DOI:
10.52711/0974-360X.2024.00729
Address:
Waill Elkhateeb1, Ahmed Faried2, Dina E. El-Ghwas1*, Marwa O. Elnahas1, Ibrahim Nafady3, Ghoson Daba1
1Chemistry of Natural and Microbial Products Department, National Research Centre, Cairo, Egypt.
2Botany Department, Faculty of Science, Assiut University, Assiut, Egypt.
3Wadi Al-Assuity Protected Area, Ministry of Environment of Egypt, Assiut City, Egypt.
*Corresponding Author
Published In:
Volume - 17,
Issue - 10,
Year - 2024
ABSTRACT:
Fungi are a distinguished category of microorganisms that belong to a distinct kingdom. Biotechnological methods have significant contributions in several domains and shown generosity in manufacturing diverse metabolites that belong to distinct chemical classes and possess varying bioactivity and/or industrial applications. The mentioned advantages have fostered the habit of screening for fungus from unexplored origins. In this study, we conducted a screening to identify fungus from a distant bat cave in Assiut governorate, Egypt. Specifically, we focused on endophytic fungi found in flower petals and endolichenic fungi found in lichen. As a consequence, 17 distinct fungal species were isolated, which can be classified into 12 different fungal genera. Furthermore, the morphological and microscopic identification of the 4 isolates was unattainable due to their sterile mycelia appearance. Therefore, four individual specimens were genetically identified by sequencing their ITS regions as Rhizomucor miehei NRCWA, Penicillium chrysogenum NRCWA, P. polonicum NRCWA, and P. crustosum NRCWA. The corresponding accession codes for these identifications are PP422033, PP422038, PP422039, and PP422040, respectively. This study is the initial documentation of the extraction of endophytic and endolichenic fungi from Chrysothrix candelaris specimens obtained from Egypt. Exploring and identifying fungi from unexplored sources can help uncover powerful metabolites that have potential applications in several biotechnological and industrial sectors.
Cite this article:
Waill Elkhateeb, Ahmed Faried, Dina E. El-Ghwas, Marwa O. Elnahas, Ibrahim Nafady, Ghoson Daba. Exploring the Dominance of Fungal genera in some Egyptian novel sources. Research Journal of Pharmacy and Technology. 2024; 17(10):4727-8. doi: 10.52711/0974-360X.2024.00729
Cite(Electronic):
Waill Elkhateeb, Ahmed Faried, Dina E. El-Ghwas, Marwa O. Elnahas, Ibrahim Nafady, Ghoson Daba. Exploring the Dominance of Fungal genera in some Egyptian novel sources. Research Journal of Pharmacy and Technology. 2024; 17(10):4727-8. doi: 10.52711/0974-360X.2024.00729 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2024-17-10-14
REFERENCES:
1. Daba GM, Elkhateeb WA, El-Dein AN, Ahmed EF, Hagrassi AM, Fayad W, Wen TC. Therapeutic potentials of n-hexane extracts of the three medicinal mushrooms regarding their anti-colon cancer, antioxidant, and hypocholesterolemic capabilities. Biodiversitas Journal of Biological Diversity, 2020; 21(6). doi https://doi.org/10.13057/biodiv/d210615
2. Gunasekaran S, Sundaramoorthy S, Anitha U, Sathiavelu M, Arunachalam S. Endophytic Fungi with Antioxidant Activity- A Review. Research J. Pharm. and Tech. 2015; 8(6): June, 731-737.
3. Elkhateeb WA, Daba GM, El-Dein AN, Sheir DH, Fayad W, Shaheen MN, Elmahdy EM, Wen TC. Insights into the in-vitro hypocholesterolemic, antioxidant, antirotavirus, and anticolon cancer activities of the methanolic extracts of a Japanese lichen, Candelariella vitellina, and a Japanese mushroom, Ganoderma applanatum. Egyptian Pharmaceutical Journal. 2020; 19 (1): 67-73. http:// doi:10.37871/jbres1890
4. Josphine A, Senthilkumar G, Madhanraj P, Panneerselvam A. . Diversity of Fungi from Drift Wood of Muthupet Mangroves. Asian J. Pharm. Ana. 2011; 1(3): July-Sept. 53-55.
5. Thomas PW, Elkhateeb WA, Daba GM. Chaga (Inonotus obliquus): A medical marvel but a conservation dilemma. Sydowia. 2020; 72: 123-130. doi:10.12905/0380.sydowia72-2020-0123
6. El-Hagrassi A, Daba G, Elkateeb W, Ahmed E, El-Dein AN, Fayad W, Shaheen M, Shehata R, El-Manawaty M, Wen TC. In vitro bioactive potential and chemical analysis of the n-hexane extract of the medicinal mushroom, Cordyceps militaris. Malaysian Journal of Microbiology. 2020; 16(1): 40-48. doi:10.21161/mjm.190346
7. Gopi K, Jayaprakashvel M. Distribution of Endophytic Fungi in Different Environments and Their Importance. Research J. Pharm. and Tech. 2017; 10(11): 4102-4104.
8. Rajani P, Rajasekaran C, Vasanthakumari MM, Olsson SB, Ravikanth G, Uma Shaanker R. Inhibition of plant pathogenic fungi by endophytic Trichoderma spp. through mycoparasitism and volatile organic compounds. Microbiol. Res. 2021; 242: 126595. doi: 10.1016/j.micres.2020.126595.
9. Hyde KD, Norphanphoun C, Chen J, Dissanayake AJ, Doilom M, Hongsanan S, Jayawardena RS, Jeewon R, Perera RH, Thongbai B, et al. Thailand’s amazing diversity: Up to 96 % of fungi in northern Thailand may be novel. Fungal Divers. 2018; 93, 215–239.
10. Raviraja NS. Fungal endophytes in five medicinal plant species from Kudremukh Range, Western Ghats of India. J. Basic Microbiol. 2005; 45, 230–235. doi:10.1007/s13225-018-0415-7
11. Rustamova N, Bozorov K, Efferth T, Yili A. Novel secondary metabolites from endophytic fungi: Synthesis and biological properties. Phytochem. Rev. 2020; 19, 425–448. doi:10.1007/s11101-020-09672-x
12. Dhayanithy G, Subban K, Chelliah J. Diversity and biological activities of endophytic fungi associated with Catharanthus roseus. BMC Microbiol. 2019; 19: 22. https://doi.org/10.1186/s12866-019-1386-x
13. Fleming A. On the antibacterial action of cultures of a Penicillium, with special reference to their use in the isolation of B. influenzae. British Journal of Experimental Pathology. 1929; 10(3): 226.
14. Abraham EP, Chain E, Fletcher CM, Gardner AD, Heatley NG, Jennings MA, Florey HW. Further observations on penicillin. The Lancet. 1941; 238(6155): 177-189.
15. Abraham E. Selective reminiscences of beta-lactam antibiotics: early research on penicillin and cephalosporins. Bioessays. 1990; 12:601–606. doi: 10.1002/bies.950121208.
16. Aly AH, Debbab A, Proksch P. Fifty years of drug discovery from fungi. Fungal Diversity. 2011; 50: 3-19. https://doi.org/10.1007/s13225-011-0116-y
17. Selvaraju S, Vasanth M, Rajarajan R, Raghupathy V. Cytogenetic Activities of Fungicide on the Root Apicalmeristems of Onion Plant (Allium cepa L.). Asian J. Res. Pharm. Sci. 2014; 4(4): 160-164.
18. Newton GG, Abraham EP. Cephalosporin C, a new antibiotic containing sulphur and D-α-aminoadipic acid. Nature. 1955; 175(4456): 548-548. doi: 10.1038/175548a0.
19. Kango N, Jana UK, Choukade ARE. Fungal enzymes: sources and biotechnological applications. Advancing Frontiers in Ecology and Mycotechnology: Basic and Applied Aspects of Fungi. 2019; 515-538. doi:10.1007/978-981-13-9349-5_21
20. Agrawal S, Kango N. Fungal Therapeutic Enzymes: Utility in the Treatment of Human Ailments. In Fungi and Fungal Products in Human Welfare and Biotechnology. 2023: 493-512. doi:10.1007/978-981-19-8853-0_17
21. Mapari SA, Meyer AS, Thrane U, Frisvad JC. Identification of potentially safe promising fungal cell factories for the production of polyketide natural food colorants using chemotaxonomic rationale. Microbial Cell Factories. 2009; 8: 1-15. doi:10.1186/1475-2859-8-24
22. Elkhateeb W, Daba G. Fungal Pigments: Their Diversity, Chemistry, Food and Non-Food Applications. Applied Microbiology. 2023; 3(3): 735-751. https://doi.org/10.3390/applmicrobiol3030051
23. Domsch KH, Gams W, Anderson TH. Compendium of soil fungi. Volume 1. Academic Press (London) Ltd; 1980.
24. 20-Moubasher AH. Soil fungi in Qatar and other Arab countries. The Centre for Scientific and Applied Research, University of Qatar; 1993.
25. Elkhateeb WA, Mettwally WS, Saleh SA, Fayad W, Nafady IM, Daba GM. Morpho molecular identification, metabolic profile, anticancer, and antioxidant capacities of Penicillium sp. NRC F1 and Penicillium sp. NRC F16 isolated from an Egyptian remote cave. Egyptian Pharmaceutical Journal. 2022; 21(1): 57-67. doi:10.4103/epj.epj_72_21
26. Ota´ lora-Ardila A, Torres JM, Barbier E, Pimentel NT, Leal ESB, Bernard E. Thermally-assisted monitoring of bat abundance in an exceptional cave in Brazil’s Caatinga drylands. Acta Chiropterol. 2019; 21: 411–423. https://doi.org/10.3161/15081109ACC2019.21.2.016
27. Mankar SD, Vikhe S, Pawar T, Bhawar SB. Current Perspective of Fungi - A Review. Asian Journal of Research in Pharmaceutical Sciences. 2022; 12(3): 251-7.
28. Taboada SG. Los murcie´lagos de Cuba. 1st ed. Cuba: Editoral Academia La Habana; 1979.
29. Azevedo IS, Bernard E. Avaliac¸ão do nı´vel de relevaˆncia e estado de conservac¸ão da caverna “MeuRei” no PARNA Catimbau, Pernambuco. Rev Bras Espeleol. 2015; 1: 1–23.
30. Kokurewicz T, Ogo´rek R, Pusz W, Matkowski K. Bats increase the number of cultivable airborne fungi in the “Nietoperek” bat reserve in Western Poland. Microb Ecol. 2016; 72: 36–48. https://doi.org/10.1007/s00248-016-0763-3 PMID: 27084554
31. Sharma L, Sousa M, Faria AS, Nunes-Pereira M, Cabral JA, Phillips AJL, et al. Worldwide recombination in emergent white-nose syndrome pathogen Pseudogymnoascus destructans. BioRxiv [Preprint]. 2019; bioRxiv 868331 [posted 2019 Dec 8]. [11 p.]. Available from: https://www.biorxiv.org/content/10. 1101/868331v1 https://doi.org/10.1101/868331
32. Dhevagi P, Ramya A, Priyatharshini S, Geetha Thanuja K, Ambreetha S, Nivetha A. Industrially important fungal enzymes: productions and applications. Recent Trends in Mycological Research: Volume 2: Environmental and Industrial Perspective. 2021; 263-309. doi:10.1007/978-3-030-68260-6_11
33. Rao USM, Tesema N. Biochemical Influence of Soaking and Blanching on Nutritional and Phytotherapeutic Properties of Ethiopian abish (Trigonella foenumgraecum) Seed Flour. Research J. Pharm. and Tech. 2011; 4(7): 1154-1158.
34. Tan RX, Zou WX. Endophytes: a rich source of functional metabolites. Nat. Prod. Rep. 2001; 18: 448-459. doi: 10.1039/b100918o.
35. Strobel GA. Microbial gifts from rain forests. Can. J. Plant Pathol. 2002; 24: 14-20. doi:10.1080/07060660109506965
36. Elkhateeb WA. Some mycological, Phyto pathological and physiological studies on microbiota of selected newly reclaimed soils in Assiut governorate. Egypt. Master thesis, faculty of scenic, Assiut University. 2005.
37. Toghueo RMK, Boyom FF. Endophytic Penicillium species and their agricultural, biotechnological, and pharmaceutical applications. 3 Biotech. 2020; 10(3); 107. doi: 10.1007/s13205-020-2081-1
38. Elsunni MA, Yang ZD. Secondary metabolites of the endophytic fungi Penicillium polonicum and their monoamine oxidase inhibitory activity. Chemistry of Natural Compounds. 2018; 54: 1018-1019. doi:10.1007/s10600-018-2540-7
39. Khalil AMA, Hassan SED, Alsharif SM, Eid AM, Ewais EED, Azab E, Gobouri AA, Elkelish A, Fouda A. Isolation and characterization of fungal endophytes isolated from medicinal plant Ephedra pachyclada as plant growth-promoting. Biomolecules. 2021; 11(2): 140. doi: 10.3390/biom11020140.
40. Zeng WL, Li WK, Han H, Tao YY, Yang L, Wang ZT, Chen KX. Microbial biotransformation of gentiopicroside by the endophytic fungus Penicillium crustosum 2T01Y01. Applied and Environmental Microbiology. 2014; 80(1): 184-192. https://doi.org/10.1128/aem.02309-13
41. Abutaha N, Semlali A, Baabbad A, Al-Shami M, Alanazi M, Wadaan MA. Anti-proliferative and anti-inflammatory activities of entophytic Penicillium crustosum from Phoenix dactylifer. Pakistan Journal of Pharmaceutical Sciences. 2018; 31(2).
42. Malmstrøm J, Christophersen C, Barrero AF, Oltra JE, Justicia J, Rosales A. Bioactive metabolites from a marine-derived strain of the fungus Emericella versicolor. Journal of Natural Products. 2002; 65(3): 364-367. doi: 10.3390/md20010058
43. Otuokere IE, Okafor GU, Chinweuba AJ. Potentiation of the Fungicidal Activity 1-(2, 4-Dihydroxyphenyl) Ethanone Ligand and Its Divalent Metal Complexes. Research J. Science and Tech. 2011; 3(5): 273-275.
44. Elkhateeb WA, Daba GM. Chemical and Bioactive Metabolites of Humicola and Nigrospora Secondary Metabolites. Journal of Pharmaceutics and Pharmacology Research. 2022; 5(1): 1-4. DOI:10.31579/2693-7247/058
45. Pitt JI, Hocking AD. Aspergillus and related teleomorphs. In Fungi and food spoilage (pp. 351-439). Cham: Springer International Publishing. 2022. doi:10.1007/978-0-387-92207-2_8
46. Benny GL, Humber RA, Morton JB. Zygomycota: zygomycetes. In Systematics and Evolution: Part A (113-146). Berlin, Heidelberg: Springer Berlin Heidelberg. 2001. doi:10.1007/978-3-662-10376-0_6
47. Ferreira J, Lennartsson P, Taherzadeh M. Production of Ethanol and Biomass from Thin Stillage Using Food-Grade Zygomycetes and Ascomycetes Filamentous Fungi. Energies. 2014; 7: 3872–3885. https://doi.org/10.3390/en7063872
48. Elkhateeb WA, Kolaibe AG, Daba, GM. Cochliobolus, Drechslera, Bipolaris, Curvularia different nomenclature for one potent fungus. Journal of Pharmaceutics and Pharmacology Research. 2021; 4(1): 1-6. doi:10.31579/2693-7247/031
49. Hawas UW, El-Desouky S, Abou El-Kassem L, Elkhateeb W. Alternariol derivatives from Alternaria alternata, an endophytic fungus residing in red sea soft coral, inhibit HCV NS3/4A protease. Applied Biochemistry and Microbiology. 2015; 51: 579-584. doi:10.1134/S0003683815050099
50. Selvi PS, Iyer P. Isolation and Characterization of Pigments from Microorganisms Isolated from Marine Soil. Research J. Pharm. and Tech. 2018; 11(10): 4296-4302.
51. Abou El-Kassem L, Hawas UW, El-Souda S, Ahmed EF, El-Khateeb W, Fayad W. Anti-HCV protease potential of endophytic fungi and cytotoxic activity. Biocatalysis and Agricultural Biotechnology. 2019; 19: 101170. https://doi.org/10.1016/j.bcab.2019.101170
52. El-Garawani I, Emam M, Elkhateeb W, El-Seedi H, Khalifa S, Oshiba S, Abou-Ghanima S, Daba G. In vitro antigenotoxic, antihelminthic and antioxidant potentials based on the extracted metabolites from lichen, Candelariella vitellina. Pharmaceutics. 2020; 12(5): 477. doi: 10.3390/pharmaceutics12050477
53. Lutzoni F, Miadlikowska J. Lichens. Curr Biol. 2009; 19(13): R502–R503. doi: 10.1016/j.cub.2009.04.034.
54. Suryanarayanan TS, Thirunavukkarasu N. Endolichenic fungi: the lesser-known fungal associates of lichens. Mycology. 2017; 8(3): 189–196. doi: 10.1080/21501203.2017.1352048
55. Arnold AE, Miadlikowska J, Higgins KL, et al. A phylogenetic estimation of trophic transition networks for ascomycetous fungi: are lichens cradles of symbiotrophic fungal diversification? Syst Biol. 2009; 58(3): 283–297 doi: 10.1093/sysbio/syp001.
56. Dobson FS. Common British Lichens. Jarrold; 1979.
57. Sangappa M, Thiagarajan P. Isolation and Screening of Soil Penicillium sp VIT-2012 Metabolites against Methicillin Resistant Staphylococcus aureus. Research J. Pharm. and Tech. 2013; Dec. 6(12): 1340-1349.
58. Chiari M, Anhê ACBM, Costa WR, dos Santos Senhuk APM. Biomonitoring of air pollution: a dichotomous key for lichen species identification. Ciência e Natura. 2020; 42: e77-e77. https://doi.org/10.5902/2179460X41851
59. Abida B, HariKrishna S. Monitoring air pollution using lichen species in south Bangalore, Karnataka. International Journal of Chem. Tech. Research. 2010; 2(1): 255-260.
60. Văcar CL, Covaci E, Chakraborty S, Li B, Weindorf DC, Frențiu T, Pârvu M, Podar D. Heavy metal-resistant filamentous fungi as potential mercury bio remediators. Journal of Fungi. 2021; 7(5): 386. https://doi.org/10.3390/jof7050386
61. Mo J, Liu Y, Gao X, Zhou S, Deng Y, Ke Y, Peng L, Li H, Chen S, Long J. Potential application of Fusarium fungal strains (Fusarium sp. FP, Arthrinium sp. FB, and Phoma sp. FR) for removal of Tl (I) ions from water. Environmental Science and Pollution Research. 2022; 29(30): 46049-46063. doi: 10.1007/s11356-022-18791-1.
62. El-Morsy ES. Cunninghamella echinulata a new biosorbent of metal ions from polluted water in Egypt. Mycologia. 2004; 96(6): 1183-1189. https://doi.org/10.2307/3762133
63. Al Abboud MA, Alawlaqi MM. Bio uptake of copper and their impact on fungal fatty acids. Aust. J. Basic. Appl. Sci. 2011; 5(11): 283-290.
64. Shoaib A, Akhtar S, Akhtar N. Copper tolerance, protein and catalytic activity in phytopathogenic fungus Alternaria alternata. Global NEST Journal. 2015; 17(4): 664-672.
65. Verma J, Bhatt A, Agrawal PK. In-vitro study on bioaccumulation and tolerance of heavy metals by endophytic fungi Alternaria alternata isolated from Cupressus torulosa D. DON. Octa J Environ Res. 2016; 4: 46-154.
66. Vardhana J, Kathiravan G, Dhivya R. Biodiversity of Endophytic Fungi and its Seasonal Recurrence from Some Plants. Research J. Pharm. and Tech. 2017; 10(2): 490-496.
67. El Menoufy HA, Elkhateeb WA, Daba GM. Biotransformation of Steroids: History, Current Status, and Future Prospects. Fungi Bioactive Metabolites: Integration of Pharmaceutical Applications. 2024; 743-762. doi:10.1007/978-981-99-5696-8_25
68. Elkhateeb WA, Daba GM. The exceptional endophytic fungi, Emericella (Berk.) and Phoma (Sacc.) genera. International Journal of Research in Pharmacy and Biosciences. 2020; 7(1): 1-6.
69. Elkhateeb WA, Daba GM. Epicoccum species as potent factories for the production of compounds of industrial, medical, and biological control applications. Biomedical Journal of Scientific and Technical Research. 2019; 14(3): 10616-10620. doi:10.26717/BJSTR.2019.14.002541