Author(s):
Vishal B. Jadhav, Yogesh S. Ahire, Chandrashekhar D. Patil, Jai Singh Vaghela
Email(s):
kavyashri9312@yahoo.com
DOI:
10.52711/0974-360X.2024.00750
Address:
Vishal B. Jadhav1,2*, Yogesh S. Ahire3, Chandrashekhar D. Patil4, Jai Singh Vaghela2
1Department of Pharmacology, GES's Sir Dr. M. S. Gosavi College of Pharmaceutical Education and Research, Nashik - 422005, Maharashtra, India.
2Department of Pharmacology, Bhupal Nobles’ College of Pharmacy, Bhupal Nobles’ University, Udaipur - 313001, Rajasthan, India.
3Department of Pharmacology, K.B.H.S.S. Trust's Institute of Pharmacy, Malegaon, Nashik - 423501, Maharashtra, India.
4Department of Pharmacology, Divine College of Pharmacy, Satana, Nashik - 423101, Maharashtra, India.
*Corresponding Author
Published In:
Volume - 17,
Issue - 10,
Year - 2024
ABSTRACT:
The investigation was aimed at testing the nephroprotective potential of methanol extract (MEHA) from Hygrophila auriculata (K. Schum) Heine against hyperglycemia and dyslipidemia in adult Wistar albino rats with streptozotocin (STZ)/ nicotinamide (NA)-induced diabetic kidney disease (DKD). Adult male albino Wistar rats with fasting blood glucose (FBG) levels greater than 250 mg/dL were selected and randomly assigned to six groups after the induction of diabetes. The normoglycemic group (Group I) received oral saline, while diabetic groups (II-VI) received saline, MEHA at doses of 100, 200, and 400 mg/kg, and metformin (MET) at 180 mg/kg, respectively. MEHA and MET were administered orally as a 1% carboxymethyl cellulose (CMC) suspension from the 5th to the 8th week after diabetes induction. At week 8, comprehensive assessments were conducted to evaluate renal function, glycemic control, dyslipidemia, oxidative stress markers, and kidney histoarchitecture. MEHA treatment at 200 and 400 mg/kg and metformin demonstrated significant reductions in hyperglycemia, dyslipidemia, and oxidative stress. Furthermore, improved renal function indices and reduced vacuolar degeneration in renal tubules was seen in diabetic rats following MEHA and MET administration. The present study provides compelling evidence for the renoprotective efficacy of MEHA against STZ/NA-induced DKD in rats. This effect is likely attributed to MEHA's hypoglycemic, hypolipidemic, and antioxidant properties.
Cite this article:
Vishal B. Jadhav, Yogesh S. Ahire, Chandrashekhar D. Patil, Jai Singh Vaghela. Hypoglycemia and Hypolipidemia Assisted Nephroprotective Potential of Hygrophila auriculata (K. Schum) Heine in Streptozotocin/Nicotinamide Rodent Model of Type 2 Diabetes. Research Journal of Pharmacy and Technology. 2024; 17(10):4873-9. doi: 10.52711/0974-360X.2024.00750
Cite(Electronic):
Vishal B. Jadhav, Yogesh S. Ahire, Chandrashekhar D. Patil, Jai Singh Vaghela. Hypoglycemia and Hypolipidemia Assisted Nephroprotective Potential of Hygrophila auriculata (K. Schum) Heine in Streptozotocin/Nicotinamide Rodent Model of Type 2 Diabetes. Research Journal of Pharmacy and Technology. 2024; 17(10):4873-9. doi: 10.52711/0974-360X.2024.00750 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2024-17-10-35
REFERENCES:
1. Forbes JM. Cooper ME. Mechanisms of diabetic complications. Physiol Rev. 2013;93(1):137-88. doi:10.1152/physrev.00045.2011
2. Wen L. Zhang Y. Sun-Waterhouse D. You L. Fu X. Advantages of the polysaccharides from Gracilaria lemaneiformis over metformin in antidiabetic effects on streptozotocin-induced diabetic mice. RSC Adv. 2017; 7(15): 9141-51. doi:10.1039/c6ra26970b
3. Fowler MJ. Microvascular and macrovascular complications of diabetes. Clin Diabetes. 2008; 26(2): 77-82. doi:10.2337/diaclin.26.2.77
4. Fox CS. Golden SH. Anderson C et al Update on prevention of cardiovascular disease in adults with type 2 diabetes mellitus in light of recent evidence: A scientific statement from the American Heart Association and the American Diabetes Association. Circulation. 2015; 132(8): 691-718. doi:10.1161/CIR.0000000000000230
5. Chatterjee S. Khunti K. Davies MJ. Type 2 diabetes. Lancet. 2017;389(10085):2239-51. doi:10.1016/S0140-6736(17)30058-2
6. Bergrem H. Leivestad T. Diabetic nephropathy and end-stage renal failure: The Norwegian story. Adv Ren Replace Ther. 2001; 8(1): 4-12. doi:10.1053/jarr.2001.21711
7. Gæde P. Lund-Andersen H. Parving HH, Pedersen O. Effect of a Multifactorial Intervention on Mortality in Type 2 Diabetes. N Engl J Med. 2008; 358(6): 580-91. doi:10.1056/nejmoa0706245
8. Shang G. Gao P. Zhao Z et al 3,5-Diiodo-l-thyronine ameliorates diabetic nephropathy in streptozotocin-induced diabetic rats. Biochim Biophys Acta - Mol Basis Dis. 2013; 1832(5): 674-84. doi:10.1016/j.bbadis.2013.01.023
9. Pattabiraman K. Muthukumaran P. Antidiabetic and Antioxidant Activity of Morinda tinctoria roxb Fruits Extract in Streptozotocin-Induced Diabetic Rats. Asian J Pharm Tech. 2011; 1(2): 34-9.
10. Rutledge JC. Ng KF. Aung HH. Wilson DW. Role of triglyceride-rich lipoproteins in diabetic nephropathy. Nat Rev Nephrol. 2010; 6(6): 361-70. doi:10.1038/nrneph.2010.59
11. Chowdary RP. Praveen D. Vijey AM. A prospective study on incidence of dyslipidemia in diabetes mellitus. Res J Pharm Technol. 2017; 10(2): 431-3. doi:10.5958/0974-360x.2017.00086.5
12. Chehade JM. Gladysz M. Mooradian AD. Dyslipidemia in type 2 diabetes: Prevalence, pathophysiology, and management. Drugs. 2013; 73(4): 327-39. doi:10.1007/s40265-013-0023-5
13. Piccoli GB. Grassi G. Cabiddu G et al Diabetic kidney disease: A syndrome rather than a single disease. Rev Diabet Stud. 2015; 12(1-2): 87-109. doi:10.1900/RDS.2015.12.87
14. Vincent AM. Russell JW. Low P. Feldman EL. Oxidative stress in the pathogenesis of diabetic neuropathy. Endocr Rev. 2004; 25(4): 612-28. 10.1210/er.2003-0019
15. Khan MY. Gupta P. Bihari B. Verma VK. A Review on Diabetes and Its Management. Asian J Pharm Res. 2013; 3(1): 28-33. http://www.i-scholar.in/index.php/Ajpr/article/view/42761
16. Saha D. Tamrakar A. Xenobiotics , Oxidative Stress , Free Radicals Vs . Antioxidants : Dance Of Death to Heaven ’ s Life. Asian J Res Pharm Sci. 2011; 1(2): 36-8.
17. Seifried HE. Pilch SM. Antioxidants in Health and Disease. Nutr Prev Treat Dis Third Ed. 2012; 7(4): 319-39. doi:10.1016/B978-0-12-391884-0.00018-4
18. Hussain MS. Fareed S. Ali M. Preliminary phytochemical and pharmacognostical screening of the ayurvedic drug Hygrophila auriculata (K. Schum) heine. Pharmacogn J. 2011; 3(23): 28-40. doi:10.5530/pj.2011.23.5
19. Kshirsagar A. Ingale K. Vyawahare N. Thorve V. Hygrophila spinosa: A comprehensive review. Pharmacogn Rev. 2010; 4(8): 167-71. doi:10.4103/0973-7847.70912
20. Bibu KJ. Joy AD. Mercey KA. Therapeutic effect of ethanolic extract of Hygrophila spinosa T. Anders on gentamicin-induced nephrotoxicity in rats. Indian J Exp Biol. 2010; 48(9): 911-7.
21. Ingale KG. Thakurdesai PA. Vyawahare NS. Protective effect of Hygrophila spinosa against cisplatin induced nephrotoxicity in rats. Indian J Pharmacol. 2013; 45(3): 232-6. doi:10.4103/0253-7613.111909
22. Harborne JB. Methods of Plant Analysis. Phytochem Methods. Published online 1973:1-32. doi:10.1007/978-94-009-5921-7_1
23. CPCSEA. Committee for the Purpose of Control and Supervision of Experiments on Animals (CPCSEA). Compend CPCSEA 2018. Published online 2018. http://cpcsea.nic.in/WriteReadData/userfiles/file/Compendium of CPCSEA.pdf
24. Organisation for Economic Cooperation and Development. Test guideline 425: acute oral toxicity - Up-and-Down Procedure. Guidel Test Chem. 2001;(December):26.
25. Masiello P. Broca C. Gross R et al Experimental NIDDM: Development of a new model in adult rats administered streptozotocin and nicotinamide. Diabetes. 1998; 47(2): 224-9. doi:10.2337/diab.47.2.224
26. Kandhare AD. Raygude KS. Ghosh P. Ghule AE. Bodhankar SL. Neuroprotective effect of naringin by modulation of endogenous biomarkers in streptozotocin induced painful diabetic neuropathy. Fitoterapia. 2012; 83(4): 650-9. doi:10.1016/j.fitote.2012.01.010
27. Navale AM. Paranjape A. Antidiabetic and renoprotective effect of Anogeissus acuminata leaf extract on experimentally induced diabetic nephropathy. J Basic Clin Physiol Pharmacol. 2018; 29(4): 359-64. doi:10.1515/jbcpp-2017-0190
28. Visnagri A. Kandhare AD. Chakravarty S. Ghosh P. Bodhankar SL. Hesperidin, a flavanoglycone attenuates experimental diabetic neuropathy via modulation of cellular and biochemical marker to improve nerve functions. Pharm Biol. 2014; 52(7): 814-28. doi:10.3109/13880209.2013.870584
29. Ohkawa H. Ohishi N. Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979; 95(2): 351-8. doi:10.1016/0003-2697(79)90738-3
30. Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959; 82(1):70-7.
31. Misra HP. Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem. 1972; 247(10): 3170-5. doi:10.1016/s0021-9258(19)45228-9
32. Bastaki S. Diabetes mellitus and its treatment. Int J Diabetes Metab. 2005; 13(3): 111-34. doi:10.1159/000497580
33. Chigozie IJ. Chidinma IC. Hypoglycemic, hypocholesterolemic and ocular-protective effects of an aqueous extract of the rhizomes of sansevieria senegambica baker (Agavaceae) on alloxan-induced diabetic wistar rats. Am J Biochem Mol Biol. 2012; 2(2): 48-66. doi:10.3923/ajbmb.2012.48.66
34. Khatib NA. Patil PA. Evaluation of Garcina indica whole fruit extracts for hypoglycemic potential in streptozotocin induced hyperglycemic rats. Res J Pharm Technol. 2011; 4(6): 999-1003.
35. Schnedl WJ. Ferber S. Johnson JH. Newgard CB. STZ transport and cytotoxicity: Specific enhancement in GLUT2-expressing cells. Diabetes. 1994; 43(11): 1326-33. doi:10.2337/diabetes.43.11.1326
36. Turk J. Corbett JA. Ramanadham S. Bohrer A. McDaniel ML. Biochemical evidence for nitric oxide formation from streptozotocin in isolated pancreatic islets. Biochem Biophys Res Commun. 1993; 197(3): 1458-64. doi:10.1006/bbrc.1993.2641
37. Burkart V. Wang ZQ. Radons J et al Mice lacking the poly(ADP-ribose) polymerase gene are resistant to pancreatic beta-cell destruction and diabetes development induced by streptozocin. Nat Med. 1999; 5(3): 314-9. doi:10.1038/6535
38. Oguri S. Motegi K. Endo Y. Augmented lipopolysaccharide-induction of the histamine-forming enzyme in streptozotocin-induced diabetic mice. Biochim Biophys Acta - Mol Basis Dis. 2003; 1637(1): 83-90. doi:10.1016/S0925-4439(02)00217-X
39. LeDoux SP. Hall CR. Forbes PM. Patton NJ. Wilson GL. Mechanisms of nicotinamide and thymidine protection from alloxan and streptozocin toxicity. Diabetes. 1988; 37(8): 1015-9. doi:10.2337/diab.37.8.1015
40. Ichikawa K. Yamato T. Ojima K et al Effect of KAD-1229, a novel hypoglycaemic agent, on plasma glucose levels after meal load in type 2 diabetic rats. Clin Exp Pharmacol Physiol. 2002; 29(5-6): 423-7. doi:10.1046/j.1440-1681.2002.03682.x
41. Zafar M. Naeem-ul-Hassan Naqvi S. Effects of STZ-Induced Diabetes on the Relative Weights of Kidney, Liver and Pancreas in Albino Rats: A Comparative Study. Int J Morphol. 2010; 28(1): 135-42. doi:10.4067/s0717-95022010000100019
42. Cheng D. Liang B. Li Y. Antihyperglycemic effect of ginkgo biloba extract in streptozotocin-induced diabetes in rats. Biomed Res Int. 2013; 2013: 162724. doi:10.1155/2013/162724
43. Rao U. Babujanarthanam R. Arirudran B. Clinical Evaluation to Assess the Efficacy of Ethanolic Extract of Avocado Fruit on Diabetic Dyslipidemia Studied in STZ-Induced Experimental Albino Rats. Asian J Res Chem. 2011; 4(7): 1131-6.
44. Niveditha H. Yogitha C. Liji P. Sundeep S. Himamshu NV. Vinutha BV. Pooja P. Clinical correlation of HbA1c and diabetic nephropathy with diabetic retinopathy. J Evol Med Dent Sci. 2013; 2(49): 9430-5. doi:10.14260/jemds/1635
45. Kale MK. Charbe N. Patil MP. Bhusari KP. Theobroma Cocoa in Diabetic Nphrotoxicity. Res J Pharm Technol. 2009;2(2):308-11.
46. Kasiske BL. O’Donnell MP. Cleary MP. Keane WF. Treatment of hyperlipidemia reduces glomerular injury in obese Zucker rats. Kidney Int. 1988; 33(3): 667-72. doi:10.1038/ki.1988.51
47. Hung CC. Tsai JC. Kuo HT. Chang JM. Hwang SJ. Chen HC. Dyslipoproteinemia and impairment of renal function in diabetic kidney disease: An analysis of animal studies, observational studies, and clinical trials. Rev Diabet Stud. 2013; 10(2-3): 110-20. doi:10.1900/RDS.2013.10.110
48. Misra A. Kumar S. Vikram NK. Kumar A. The role of lipids in the development of diabetic microvascular complications: Implications for therapy. Am J Cardiovasc Drugs. 2003; 3(5): 325-38. doi:10.2165/00129784-200303050-00004
49. Spencer MW. Mühlfeld AS. Segerer S et al Hyperglycemia and Hyperlipidemia Act Synergistically to Induce Renal Disease in LDL Receptor-Deficient BALB Mice. Am J Nephrol. 2004; 24(1): 20-31. doi:10.1159/000075362
50. Karandikar A. Sriram PG. Subramanian S. Evaluation of antidiabetic and antioxidant activity of praecitrullus fistulosus fruits in STZ induced diabetic rats. Res J Pharm Technol. 2014; 7(2): 196-203.
51. Kale MK. Patil MP. Bhusari KP. Evaluation of Ginkgo biloba in Diabetic Nephrotoxicity. Research Journal of Pharmacognosy and Phytochemistry. 2011; 3(6): 286-8.
52. Kashihara N. Haruna YK. Kondeti VS. Kanwar Y. Oxidative Stress in Diabetic Nephropathy. Curr Med Chem. 2010; 17(34): 4256-69. doi:10.2174/092986710793348581