Author(s):
Muhammad Andriady Saidi Nasution, Dharma Lindarto, Syah Mirsya Warli, Syafruddin Ilyas, Mohammad Ayodhia Soebadi, Iqbal Pahlevi Adeputra Nasution, Putri Chairani Eyanoer, Tri Widyawati
Email(s):
dharmalindarto@gmail.com
DOI:
10.52711/0974-360X.2024.00776
Address:
Muhammad Andriady Saidi Nasution1,2, Dharma Lindarto3*, Syah Mirsya Warli4,5, Syafruddin Ilyas6, Mohammad Ayodhia Soebadi7, Iqbal Pahlevi Adeputra Nasution8, Putri Chairani Eyanoer9, Tri Widyawati10
1Philosophy Doctor in Medicine Program, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia.
2Department of Surgery, Faculty of Medicine, Universitas Prima Indonesia, Medan, Indonesia.
3Department of Internal Medicine, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia.
4Division of Urology, Department of Surgery, Faculty of Medicine, Universitas Sumatera Utara-Haji Adam Malik General Hospital, Medan, Indonesia.
5Department of Urology, Universitas Sumatera Utara Hospital, Universitas Sumatera Utara, Medan, Indonesia.
6Study Program of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan, Indonesia.
7Department of Urology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia.
8Department of Pediatric S
Published In:
Volume - 17,
Issue - 10,
Year - 2024
ABSTRACT:
Benign prostate hyperplasia (BPH) is a life-threatening condition that primarily affects geriatric patients, with obesity serving as a major risk factor. Several studies have also reported the role of obesity as a risk factor for other chronic non-communicable diseases, such as cardiovascular disease and type 2 diabetes. Therefore, this study aims to investigate the effect of Picriafel-terrae Merr (PF) leaf extract on rat-induced obesity and BPH. The sample population comprised male Wistar rats, which were randomly divided into 5 different groups. Group 1 (G1) served as the normal, Group 2 (G2) was the negative control consisting of obese rats with BPH and treated with PF extract, while Group 3 (G3) was the positive control administered 1 mg/kg BW finasteride. In addition, Groups 4 (G4) and 5 (G5) were administered PF extract at varying doses of 100 mg/kg BW and 200 mg/kg BW, respectively. During the experiment, the test rats received subcutaneous injections of 10 mg/kg BW testosterone for 4 weeks, followed by a high-fat diet for 12 weeks and oral administration of PF extract for 10 days. The prostate index was then calculated and examined histopathologically, followed by ELISA for the detection of interleukin-6 and Vascular Endothelial Growth Factor (VEGF). The results showed a statistically significant increase in interleukin-6 levels (p=0.024), prostate index scores (p<0.001), and histopathological examination of the prostate epithelial and stromal cells (p<0.001). However, VEGF levels were not affected by the administration of PF extract (p=0.274). Based on these results, PF extract could reduce the prostate index markers and prostate histopathology in obese Wistar rats with BPH.
Cite this article:
Muhammad Andriady Saidi Nasution, Dharma Lindarto, Syah Mirsya Warli, Syafruddin Ilyas, Mohammad Ayodhia Soebadi, Iqbal Pahlevi Adeputra Nasution, Putri Chairani Eyanoer, Tri Widyawati. Effect of Picriafel-terrae Merr. leaves extract on VEGF, Interleukin-6, Prostate Index, and Histopathology in Obesity Rats with Benign Prostate Hyperplasia. Research Journal of Pharmacy and Technology. 2024; 17(10):5046-4. doi: 10.52711/0974-360X.2024.00776
Cite(Electronic):
Muhammad Andriady Saidi Nasution, Dharma Lindarto, Syah Mirsya Warli, Syafruddin Ilyas, Mohammad Ayodhia Soebadi, Iqbal Pahlevi Adeputra Nasution, Putri Chairani Eyanoer, Tri Widyawati. Effect of Picriafel-terrae Merr. leaves extract on VEGF, Interleukin-6, Prostate Index, and Histopathology in Obesity Rats with Benign Prostate Hyperplasia. Research Journal of Pharmacy and Technology. 2024; 17(10):5046-4. doi: 10.52711/0974-360X.2024.00776 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2024-17-10-61
REFERENCES:
1. Fogaing C. Alsulihem A. Campeau L. Corcos J. Is Early Surgical Treatment for Benign Prostatic Hyperplasia Preferable to Prolonged Medical Therapy: Pros and Cons. Medicina. 2021; 57(4): 368. doi:10.3390/medicina57040368
2. Maksym RB. Kajdy A. Rabijewski M. Post-finasteride syndrome – does it really exist? The Aging Male. 2019; 22(4): 250-259. doi:10.1080/13685538.2018.1548589
3. Pushpa B. Nivethitha. Chitra A. Prevalence of benign Prostate Hyperplasia among middle aged adults in Puducherry. Asian Journal of Nursing Education and Research. 2020; 10(4): 409-412. doi:10.5958/2349-2996.2020.00087.7
4. Kim JK. Lee YG. Han K. Han JH. Obesity, metabolic health, and urological disorders in adults: a nationwide population-based study. Scientific Reports. 2021; 11(1): 8687. doi:10.1038/s41598-021-88165-z
5. Otuokere I. Alisa C. Computational study on molecular orbital’s, excited state properties and geometry optimization of anti-benign prostatic hyperplasia drug, N- (1,1-dimethylethyl)-3-oxo-(5α,17β)-4-azaandrost-1-ene-17-carboxamide (Finasteride). Asian Pharma Press. 2014; 4(4): 169-173.
6. Lubis MR. Haryani R. Safriana S. Satria D. Ethanolic Extract of Herb Pugun Tanoh (Picria fel-terrae Lour.) Modulates TCD4+ and TCD8+ Cell Profile of Doxorubicin-Induced Immuno-Suppressed Rats. Open Access Macedonian Journal of Medical Sciences. 2019; 7(22): 3774-3776. doi:10.3889/oamjms.2019.501
7. Satria D. Silalahi J. Haro G. Ilyas S. Hasibuan PAZ. Cytoprotective Activity of Ethylacetate Fraction of Picria fel-terrae Lour. Herbs. Open Access Macedonian Journal of Medical Sciences. 2019; 7(22): 3865-3867. doi:10.3889/oamjms.2019.521
8. Purba HA. Syafril S. Lindarto D. Effect of Puguntano Extract (Curanga Fel-Terrae Merr.) on hs-CRP Level in Newly Diagnosed Type 2 Diabetes Mellitus Patient. The Indonesian Biomedical Journal. 2018; 10(1): 79. doi:10.18585/inabj.v10i1.362
9. Lindarto D. Machrina Y. Syafril S. Saragih A. The Effect of Puguntano (CurangaFel-Terrae [Lour.]) extract on adiponectin receptor (Adipor) in rats with type 2 diabetes mellitus. Asian Journal of Pharmaceutical and Clinical Research. 2019; 12(3): 1-3. doi:http://dx.doi.org/10.22159/ajpcr.2019.v12i2.30456
10. Syafril S. Lindarto D. Lelo A. Sembiring RJ. Manaf A. Putra IB. Hasibuan PAZ. Mutiara E. The effect of puguntano leaf extract (curanga fel-terrae merr.) on P38 mapk levels and GLUT-4 expression in type 2 diabetic rat muscle. Open Access Macedonian Journal of Medical Sciences. 2019; 7(4): 521. doi:https://doi.org/10.3889%2Foamjms.2019.165
11. Subbaraj GK. Kumar YS. Kulanthaivel L. Antiangiogenic role of natural flavonoids and their molecular mechanism: an update. The Egyptian Journal of Internal Medicine. 2021; 33(1): 29. doi:10.1186/s43162-021-00056-x
12. Ferraz CR. Carvalho TT. Manchope MF. Artero NA. Rasquel-Oliveira FS. Fattori V. Casagrande R. Verri Jr WA. Therapeutic potential of flavonoids in pain and inflammation: mechanisms of action, pre-clinical and clinical data, and pharmaceutical development. Molecules. 2020; 25(3): 762. doi:https://doi.org/10.3390%2Fmolecules25030762
13. Salaritabar A. Darvishi B. Hadjiakhoondi F. Manayi A. Sureda A. Nabavi SF. Fitzpatrick LR. Nabavi SM. Bishayee A. Therapeutic potential of flavonoids in inflammatory bowel disease: A comprehensive review. World Journal of Gastroenterology. 2017; 23(28): 5097. doi:10.3748/wjg.v23.i28.5097
14. Nobre-Junior H V. Maia FD. de Oliveira RA. Bandeira MAM. do Ó Pessoa C. Moraes MO. Cunha GMA. Viana GSB. Neuroprotective Actions of Tannins from Myracrodruon urundeuva on 6-Hydroxydopamine-Induced Neuronal Cell Death. Journal of Herbs, Spices and Medicinal Plants. 2008; 13(2): 41-57. doi:10.1300/J044v13n02_04
15. Prasad S. Phromnoi K. Yadav VR. Chaturvedi MM. Aggarwal BB. Targeting inflammatory pathways by flavonoids for prevention and treatment of cancer. Planta medica. 2010; 76(11): 1044-1063. doi:https://doi.org/10.1055/s-0030-1250111
16. Alotaibi BS. Ijaz M. Buabeid M. Kharaba ZJ. Yaseen HS. Murtaza G. Therapeutic Effects and Safe Uses of Plant-Derived Polyphenolic Compounds in Cardiovascular Diseases: A Review. Drug Design, Development and Therapy. 2021; Volume 15: 4713-4732. doi:10.2147/DDDT.S327238
17. Hu M. Wu B. Liu Z. Bioavailability of Polyphenols and Flavonoids in the Era of Precision Medicine. Molecular Pharmaceutics. 2017; 14(9): 2861-2863. doi:10.1021/acs.molpharmaceut.7b00545
18. Singh J. Maceration, percolation and infusion techniques for the extraction of medicinal and aromatic plants. Extraction Technologies for Medicinal and Aromatic Plants. 2008; 67: 32-35.
19. Shah RS. Shah RR. Nitalikar MM. Magdum CS. Microspheres by Spray Drying: An Approach to Enhance Solubility of Bicalutamide. Asian Journal of Pharmaceutical Research. 2017; 7(3): 183. doi:10.5958/2231-5691.2017.00028.4
20. Shah RR. Jadhav A. Vakhariya RR. Bicalutamide Tablets by Spray Dried Microspheres: An Approach to Enhance Solubility. Research Journal of Pharmaceutical Dosage Forms and Technology. 2017; 9(4): 168. doi:10.5958/0975-4377.2017.00027.1
21. Kumar S. Vasudeva N. Sharma S. GC-MS analysis and screening of antidiabetic, antioxidant and hypolipidemic potential of Cinnamomum tamala oil in streptozotocin induced diabetes mellitus in rats. Cardiovascular Diabetology. 2012; 11(1): 95. doi:10.1186/1475-2840-11-95
22. Basani G. Rao Yamsani M. Sura RS. Formulation Development and Evaluation of Multiple Unit Pellet System of Tamsulosin Hydrochloride. Research Journal of Pharmacy and Technology. 2021; 14(10): 5319-5324. doi:10.52711/0974-360X.2021.00927
23. Prananda AT. Dalimunthe A. Harahap U. Syahputra RA. Nugraha SE. Situmorang PC. Fah YT. Adrian. Siahaan JM. Velaro AJ. Bilakaya B. Harahap MAY. Phytochemical profiling and cardioprotective activity of Vernonia amygdalina ethanol extract (VAEE) against ISO-induced cardiotoxicity in rats. Pharmacia. 2023; 70(3): 758-796. doi:10.3897/pharmacia.70.e111329
24. Widyawati T. Sari DK. Sumantri IB. Mustanti LF. Yusoff NA. Phytochemical Screening and DPPH Assay of Talas Padang (Colocasia gigantea) Ethanol Leaf Extract. IOP Conference Series: Earth and Environmental Science. 2023; 1241(1): 12016. doi:10.1088/1755-1315/1241/1/012016
25. Dumbre R. Kale A. Patil V. Bhosale A. Kamble M. Effect of Chandraprabha vati in experimental prostatic hyperplasia and inflammation in rats. Research Journal of Pharmacognosy and Phytochemistry. 2012; 5(430): 5302-5304.
26. Muhar AM. Velaro AJ. Prananda AT. Nugraha SE. Çamlik G. Wasnik S. Abidin SZ. Sjofjan O. Harahap MAY. Syahrian MF. Taslim NA. Mayulu N. Permatasari HK. Nurkolis F. Situmorang PC. Syahputra RA. Polyscias scutellaria: An emerging source of natural antioxidants and anti-inflammatory compounds for health. Pharmacia. 2023; 70(4): 1463-1470. doi:10.3897/pharmacia.70.e112502
27. Linkon AHM. Labib MM. Hasan T. Hossain M. Jannat ME. Deep learning in prostate cancer diagnosis and Gleason grading in histopathology images: An extensive study. Informatics in Medicine Unlocked. 2021; 24: 100582. doi:10.1016/j.imu.2021.100582
28. Otuokere I. Amaku FJ. Quantum Chemical Studies of Anti-Prostatic Carcinoma Drug N -[4-cyano3-(trifluoromethyl)phenyl]-2-hydroxy-2-methyl-3-[(4methylphenyl)sulfonyl] Propanamide (bicalutamide). Research Journal of Pharmacognosy and Phytochemistry. 2015; 7(4): 214. doi:10.5958/0975-4385.2015.00032.1
29. Abdel-Mottaleb Y. Ali HS. El-Kherbetawy MK. Elkazzaz AY. ElSayed MH. Elshormilisy A. Eltrawy AH. Abed SY. Alshahrani AM. Hashish AA. Alamri ES. Zaitone SA. Saponin-rich extract of Tribulus terrestris alleviates systemic inflammation and insulin resistance in dietary obese female rats: Impact on adipokine/hormonal disturbances. Biomedicine and Pharmacotherapy. 2022; 147: 112639. doi:10.1016/j.biopha.2022.112639
30. Guo Y. Xing E. Liang X. Song H. Dong W. Effects of total saponins from Rhizoma Dioscoreae Nipponicae on expression of vascular endothelial growth factor and angiopoietin-2 and Tie-2 receptors in the synovium of rats with rheumatoid arthritis. Journal of the Chinese Medical Association. 2016; 79(5): 264-271. doi:10.1016/j.jcma.2015.10.012
31. Stefanou D. Batistatou A. Kamina S. Arkoumani E. Papachristou DJ. Agnantis NJ. Expression of vascular endothelial growth factor (VEGF) and association with microvessel density in benign prostatic hyperplasia and prostate cancer. In Vivo. 2004; 18(2): 155-160.
32. Kwak CS. Kim MJ. Park S. Kim IG. Antioxidant Activity of Sprouts Extracts Is Correlated with Their Anti-Obesity and Anti-Inflammatory Effects in High-Fat Diet-Fed Mice. Novaes RD. ed. Evidence-Based Complementary and Alternative Medicine. 2021; 2021: 1-13. doi:10.1155/2021/8367802
33. Zamani‐Garmsiri F. Ghasempour G. Aliabadi M. Hashemnia SMR. Emamgholipour S. Meshkani R. Combination of metformin and chlorogenic acid attenuates hepatic steatosis and inflammation in high‐fat diet fed mice. IUBMB Life. 2021; 73(1): 252-263.
34. Eid BG. Abdel-Naim AB. Piceatannol Attenuates Testosterone-Induced Benign Prostatic Hyperplasia in Rats by Modulation of Nrf2/HO-1/NFκB Axis. Frontiers in Pharmacology. 2020; 11: 614897. doi:10.3389/fphar.2020.614897
35. Parsons JK. Carter HB. Partin AW. Windham BG. Metter EJ. Ferrucci L. Landis P. Platz EA. Metabolic Factors Associated with Benign Prostatic Hyperplasia. The Journal of Clinical Endocrinology and Metabolism. 2006; 91(7): 2562-2568. doi:10.1210/jc.2005-2799
36. Vickman RE. Franco OE. Moline DC. Vander Griend DJ. Thumbikat P. Hayward SW. The role of the androgen receptor in prostate development and benign prostatic hyperplasia: A review. Asian Journal of Urology. 2020; 7(3): 191-202. doi:10.1016/j.ajur.2019.10.003
37. Xie LP. Bai Y. Zhang XZ. Zheng XY. Yao KS. Xu L. Zeegers MP. Obesity and Benign Prostatic Enlargement: A Large Observational Study in China. Urology. 2007; 69(4): 680-684. doi:10.1016/j.urology.2006.12.030
38. Stoddard MD. Cho A. Te AE. Chughtai B. A Systematic Review on the Timing of Surgical Intervention for Benign Prostatic Enlargement (BPE). Current Urology Reports. 2020; 21(12): 64. doi:10.1007/s11934-020-01016-8
39. Walsh K. Sriprasad S. Hopster D. Codd J. Mulvin D. Distribution of vascular endothelial growth factor (VEGF) in prostate disease. Prostate Cancer and Prostatic Diseases. 2002; 5(2): 119-122. doi:https://doi.org/10.1038/sj.pcan.4500575
40. Descazeaud A. Weinbreck N. Robert G. Vacherot F. Abbou CC. Labrousse F. Allory Y. Rubin MA. de La Taille A. Transforming growth factor β‐receptor II protein expression in benign prostatic hyperplasia is associated with prostate volume and inflammation. BJU International. 2011; 108(2b): E23-E28. doi:https://doi.org/10.1111/j.1464-410x.2010.09699.x