Author(s): Kharissova Nuriya, Mindubaуeva Farida, Rajkamal Sharma, Smirnova Liliya, Mkhitaryan Xeniya, Chergizova Bibigul, Salikhova Yelena, Niyazova Yuliya, Ryspayeva Gulnur, Evnevich Anna, Akimzhanova Neylya, Sarsembayeva Sholpan

Email(s): 7554422@mail.ru , Salehova_89@mail.ru

DOI: 10.52711/0974-360X.2024.00786   

Address: Kharissova Nuriya1, Mindubaуeva Farida1*, Rajkamal Sharma3, Smirnova Liliya2, Mkhitaryan Xeniya1, Chergizova Bibigul1, Salikhova Yelena1*, Niyazova Yuliya1, Ryspayeva Gulnur1, Evnevich Anna1, Akimzhanova Neylya1, Sarsembayeva Sholpan1
1Karaganda Medical University” NCJSC, Karaganda, Kazakhstan.
2Kostroma State University, Kostroma, Russia.
3Advisior Cum Administrator Dr. Sarvesh Shukla Group Of Institution, Jaipur, Rajasthan, India.
*Corresponding Author

Published In:   Volume - 17,      Issue - 10,     Year - 2024


ABSTRACT:
In the last decade, the attention of researchers has been drawn to the ability of skeletal muscles to produce biologically active substances (myokines). To date, several hundred myokines have been identified in the muscle secretome. Myokines have autocrine and paracrine effects. They have their own receptors in various tissues and organs. At certain concentrations, myokines have a systemic effect on tissues and organs, provide metabolic interaction between them and have a huge range of physiological effects. However, the biological activity of many of these myokines and their mechanism of action are either not yet characterized or poorly understood. Modern research is aimed at developing drugs that block myokine signaling pathways and studying the possibilities of their use in the treatment of neuromuscular diseases, obesity, type 2 diabetes mellitus, orthopedic pathology, as well as a decrease in muscle mass and muscle strength. Type 2 diabetes mellitus (T2DM) is a socially significant disease. Currently, there is no effective therapy to completely eradicate/cure diabetes and its associated complications. It is now necessary to consider in more detail the molecular pathways and targets for each pharmacological drug. There is a need to create new anti-diabetic therapy in the future based on myokines, knowing their signaling pathways and their mechanism of action on target cells, but also for the best possible combination therapy and strategies using available drugs and the beneficial effects of physical activity and exercise in the prevention and treatment of T2DM. A few studies in mice and humans have shown that exercise increases the levels of numerous myokines in the blood plasma, leading to the process of active transcription of myokines and accelerating metabolic processes associated with increased load on muscle tissue. It has been suggested that the secretion of myokines depends on the degree of physical training; intensity and duration of the athlete’s training; its physiological and anatomical structure; the sport in which the athlete plays. Further scientific research will provide the key to understanding the process of secretion of myokines (proteins) in the body and the mechanism of their effect on various organs/systems and tissues, which will undoubtedly contribute to the success of doctors in the field of practical healthcare in the correction of pathological disorders, including diabetes mellitus.


Cite this article:
Kharissova Nuriya, Mindubaуeva Farida, Rajkamal Sharma, Smirnova Liliya, Mkhitaryan Xeniya, Chergizova Bibigul, Salikhova Yelena, Niyazova Yuliya, Ryspayeva Gulnur, Evnevich Anna, Akimzhanova Neylya, Sarsembayeva Sholpan. Role of Myokines and prospects for their role in Diabetes Mellitus Therapy. Research Journal of Pharmacy and Technology. 2024; 17(10):5119-1. doi: 10.52711/0974-360X.2024.00786

Cite(Electronic):
Kharissova Nuriya, Mindubaуeva Farida, Rajkamal Sharma, Smirnova Liliya, Mkhitaryan Xeniya, Chergizova Bibigul, Salikhova Yelena, Niyazova Yuliya, Ryspayeva Gulnur, Evnevich Anna, Akimzhanova Neylya, Sarsembayeva Sholpan. Role of Myokines and prospects for their role in Diabetes Mellitus Therapy. Research Journal of Pharmacy and Technology. 2024; 17(10):5119-1. doi: 10.52711/0974-360X.2024.00786   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2024-17-10-71


REFERENCES:
1.    Tsoriev T.T., White Zh.E., Rozhinskaya L.Ya. The role of myokines interstitial interaction and regulation of metabolism: a review of literature. Osteoporosis and Bone Diseases. 2016; 19(1): 28-34. (In Russ.) https://doi.org/10.14341/osteo2016128-34
2.    Pedersen B.K., Febbraio M.A.. Muscle as an Endocrine Organ: Focus on Muscle-Derived Interleukin-6. Physiol Rev. 2008; 88(4): 1379-1406. https://doi.org/10.1152/physrev.90100.2007
3.    Pedersen BK, Åkerström TC, Nielsen AR, et al. Role of myokines in exercise and metabolism. J Appl Physiol. 2007; Sep; 103(3): 1093-1098. doi: 10.1152/ japplphysiol.00080.2007. Epub 2007 Mar 8
4.    Grebennikova TA, Belaya ZhE, Tsoriev TT, et al. Endocrine function of bone tissue. Osteoporoz i osteopatii. 2015; (1): 28-37. (InRuss)
5.    L Garneau, C Aguer Role of myokines in the development of skeletal muscle insulin resistance and related metabolic defects in type 2 diabetes Diabetes Metab. 2019; Dec; 45(6): 505-516. DOI:10.1016/j.diabet.2019.02.006. Mar4. PMID: 30844447  DOI: 10.1016/j.diabet.2019.02.00645(6):505-516. doi: 10.1016/j.diabet.2019.02.006. Epub
6.    Jenny Hyosun Kwon, Kyoung Min Moon, and Kyueng-Whan Min Exercise-Induced Myokines can Explain the Importance of Physical Activity in the Elderly: An Overview Healthcare 2020; 8(4): 378; https://doi.org/10.3390/healthcare8040378
7.    Pedersen B.K. Muscle as a secretory organ. Compr. Physiol. 2013; 3: 1337–1362.
8.    van Hall G, Steensberg A, Sacchetti M, et al. Interleukin-6 Stimulates Lipolysis and Fat Oxidation in Humans. J Clin Endocrinol Metab. 2013. Chowdhury S, Schulz L, Palmisano B, et al. Muscle-derived interleukin 6
9.    Allen D.L., Cleary A.S, Speaker K.J et al. Myostatin, activin receptor IIb, and follistatin-like-3 gene expression are altered in adipose tissue and skeletal muscle of obese mice. Am. J. Physiol. Endocrinol. Metab. 2008 V. 294 P. 918–927
10.    Exercise-Induced Myokines can Explain the Importance of Physical Activity in the Elderly: An Overview by Jenny Hyosun Kwon 1,Kyoung Min Moon 2, and Kyueng-Whan MinHealthcare 2020; 8(4): 378; https://doi.org/10.3390/healthcare8040378
11.    Orlov S.N., Kapilevich L.V., Dyakova E.Yu., Zakharova A.N., Kabachkova A.V., Kalinnikova Yu.G., Klimanova E.A., Kironenko T.A., Milovanova K.V., Sidorenko S.V. Skeletal muscles as an endocrine organ. – Tomsk: Publishing House of Tomsk State University, 2018. – 190 p. ISBN 978-5-94621-765-1.
12.    Raschke S., Eckel J. Adipo-myokines: two sides of the same coin--mediators of inflammation and mediators of exercise // Mediators Inflamm. 2013 (2013): 320724
13.    Simbirtsev A.S. Cytokines: classification and biological functions // Cytokines and inflammation. 2004; No. 3 P. 16–22;
14.    Borish L.C., Steinke J.W. Cytokines and chemokines // J. Allergy Clin. Immunol. 2003 V. 111, No. 2 P. 460–475; Lata S., Raghava G.P.S. CytoPred: a server for prediction and classification of cytokines // Protein Eng. Des. Sel. 2008 V. 21, No. 4 P. 279–282.
15.    Rian Q Landers-Ramos 1, Nathan T Jenkins, Espen E Spangenburg, James M Hagberg, Steven J PriorCirculating angiogenic and inflammatory cytokine responses to acute aerobic exercise in trained and sedentary young men PMID: 24643426 PMCID: PMC4048778 DOI: 10.1007/s00421-014-2861-6.
16.    Kharissova N., Smirnova L., Kuzmin A., et al..The influence of the physical activity of a modern student on the characteristic of the CVS and RS and their resistance to stress during educational process. Georgian Medical News.2019;12 (297) ; 124-129. PMID: 32011307
17.    Hittel DS, Axelson M, Sarna N, et al. Myostatin Decreases with Aerobic Exercise and Associates with Insulin Resistance. Med Sci Sport Exerc. 2010; 42(11): 2023-2029. https://doi.org/10.1249/MSS.0b013e3181e0b9a8.
18.    Ryan AS, Li G, Blumenthal JB, Ortmeyer HK. Aerobic exercise + weight loss decreases skeletal muscle myostatin expression and improves insulin sensitivity in older adults. Obesity. 2013; 21(7): 1350-1356. https://doi.org/10.1002/oby.20216
19.    Rudnick J., Püttmann B., Tesch P.A. et al. Differential expression of nitric oxide synthases (NOS 1-3) in human skeletal muscle following exercise countermeasure during 12 weeks of bed rest // FASEB J. 2004 V. 18, No. 11 P. 1228–1230
20.    Otis J.S., Burkholder T.J., Pavlath G.K. Stretch-induced myoblast proliferation is dependent on the COX2 pathway // Exp. Cell Res. 2005 V. 310 P. 417–425.
21.    Broholm C., Pedersen B.K. Leukaemia inhibitory factor – An exercise-induced myokine // Exercise Immunology Review. 2010 V. 16 P. 77–85.
22.    Barbalho, Sandra and Neto, Edmundo and Goulart, Ricardo and Bechara, Marcelo and Chagas, Eduardo and Audi, Mauro and Campos, Leila and Guiger, Elen and Buchaim, Rogério and Buchain, Daniela and Cressoni Araujo, Adriano. (2020). Myokines: A descriptive review. The Journal of sports medicine and physical fitness. 60. 10.23736/S0022-4707.20.10884-3.
23.    Pedersen B.K.; Febbraio, M.A. Muscles, exercise and obesity: Skeletal muscle as a secretory organ. Nat. Rev. Endocrinol. 2012, 8, 457–465.
24.    Mai Charlotte Krogh Severinsen, Bente Klarlund Pedersen Muscle-OrganCrosstalk:TheEmergingRolesofMyokines. Endocr Rev. 2020; Aug 1; 41(4): 594–609. PMID: 32393961. PMCID: PMC7288608.doi: 10.1210/endrev/bnaa016.
25.    Sorokina L. D., Marchenko E. A., Zavyalova, A. N. Myokines. Literature review. force, 5(S3), 947-948. (In Russ.)  Volume 5 No.. S3 (2022): Materials of the All-Russian scientific forum of students with international participation “Student Science - 2022” / Miokins. Literature reviewhttps://ojs3.gpmu.org/index.php/forcipe/article/view/5438
26.    Bhutkar M. A., Bhise S. B. Comparative Studies on Antioxidant Activity of Some Antidiabetic Plants. Research J. Pharm. and Tech. 2011; 4(9): Sept. 1409-1412.
27.    Hepcy Kalarani D, Venkatesh P, Dinakar A. Anti-Diabetic Activity of Aqueous Extract of Leaves of Pavonia zeylanica in Rats. Research J. Pharm. and Tech. 2009; 2(4): 789-792.
28.    P.M. Patil, P.D. Chaudhari, N.J. Duragkar, P.P. Katolkar. Formulation and Evaluation its Anti-diabetic Activity of Liquid Oral Preparation of Gymnema sylvestre and Stevia rebaudiana and their Combination in Alloxan Diabetic Rats. Research J. Pharm. and Tech. 2010; 3(4): 1200-1204.
29.    Sandeep Goyal, V.K. Bansal, Dhruba Sankar Goswami, Suresh Kumar. sVascular Endothelial Dysfunction: Complication of Diabete Mellitus and Hyperhomocysteinemia. Research J. Pharm. and Tech. 2010; 3(3): 657-664.
30.    M Yashpal Naidu, K P Channa Basavaraj, T Tamizh Mani, K Roopa. Validated RP-HPLC Method for the Quantitation of Pioglitazone an Anti - Diabetic Drug in Bulk and Pharmaceutical Dosage Forms. Research J. Pharm. and Tech. 2010; 3(3): 885-887.
31.    Paltsyn A A Myokines Pathological physiology and experimental therapy. 2020; 64(1): 135-141  DOI: https://doi.org/10.25557/0031-2991.2020.01.135-141
32.    Wentao Chen, Liyi Wang, Wenjing You, Tizhong ShanMyokines mediate the cross talk between skeletal muscle and other organsJ. Cellular physiology. 2021; 236(4) April; 2393-2412. https://doi.org/10.1002/jcp.30033Chen W, Wang L, You W, Shan T. Myokines mediate the cross talk between skeletal muscle and other organs. J Cell Physiol. 2021; Apr; 236(4): 2393-2412. doi: 10.1002/jcp.30033. Epub 2020 Sep 3. PMID: 32885426.
33.    Moonesan MR. Muscle-kidney crosstalk; the role of myokines. J Ren Endocrinol. 2023; 9: e25129. doi: 10.34172/jre.2023.25129. J Ren Endocrinol 2023; 9: e25129. Nickan Research Institute Journal of Renal Endocrinology https://www.jrenendo.com doi: 10.34172/jre.2023.25129
34.    QiYang Wang,  QiuNan Lv, YuQiong Zhang, GuoXi Gao, Sheng LuAdvances in the research on myokine-driven regulation of bone metabolism Ming Hong Shao, 2023; DOI:https://doi.org/10.1016/j.heliyon.2023.e22547
35.    Chowdhury S, Schulz L, Palmisano B, et al. Muscle-derived interleukin 6 increases exercise capacity by signaling in osteoblasts. J Clin Invest. 2020; 130(6): 2888-2902. https://doi.org/10.1172/JCI133572
36.    Matsakas A, Friedel A, Hertrampf T, Diel P. Short-term endurance training results in a muscle-specific decrease of myostatin mRNA content in the rat. Acta Physiol Scand. 2005; 183(3): 299-307. https://doi.org/10.1111/j.1365-201X.2005.01406.x
37.    Kainulainen H, Papaioannou KG, Silvennoinen M, et al. Myostatin/ activin blocking combined with exercise reconditions skeletal muscle expression profile of mdx mice. Mol Cell Endocrinol. 2015; 399: 131-142. https://doi.org/10.1016/j.mce.2014.10.001
38.    Ko IG, Jeong JW, Kim YH, et al. Aerobic Exercise Affects Myostatin Expression in Aged Rat Skeletal Muscles: A Possibility of Antiaging Effects of Aerobic Exercise Related With Pelvic Floor Muscle and Urethral Rhabdosphincter. Int Neurourol J. 2014; 18(2): 77. https://doi.org/10.5213/inj.2014.18.2.77
39.    Berezin AE, Berezin AA, Lichtenauer M. Myokines and Heart Failure: Challenging Role in Adverse Cardiac Remodeling, Myopathy, and Clinical Outcomes. Dis Markers. 2021.13;2021:6644631. PMID: 33520013. PMCID: PMC7819753.
40.    Li F, Yang H, Duan Y, Yin Y. Myostatin regulates preadipocyte differentiation and lipid metabolism of adipocyte via ERK1/2. Cell Biol Int. 2011; 35(11): 1141-1146. https://doi.org/10.1042/CBI20110112
41.    Qin Y, Peng Y, Zhao W, et al. Myostatin inhibits osteoblastic differentiation by suppressing osteocyte-derived exosomal microRNA-218: A novel mechanism in muscle-bone communication. J Biol Chem. 2017; 292(26): 11021-11033. https://doi.org/10.1074/jbc.M116.770941
42.    Inyushkin A.N., Isakova T.S., Inyushkin A.A., Kretova I.G.. Physiological and pathophysiological role of the myokine irisin. Modern issues of biomedicine. 2023; 7(2) DOI: 10.51871/2588-0500_2023_07_02_8 UDC 612.018.2
43.    Parakhonsky A.P. The role of interleukin-6 in the development of insulin resistance. Advances in modern science.2011.No.1.:105-106; (In Russ. URL: https://natural-sciences.ru/ru/article/view?id=15709
44.    Karimov R.N., Omonov M.O., Kamilova S.A., Abdullaev S.O. The role of interleukin-6 (IL-6) in the pathogenesis of diabetes type 2 mellitus. Volume–22_Issue-3_February_2023 Journal of New Century Innovations. http://www.newjournal.org/
45.    Vasyukova O.V., Kasyanova Yu.V., Okorokov P.L., Bezlepkina O.B. Myokines and adipomyokines: inflammatory mediators or unique molecules of targeted therapy for obesity? Problems of Endocrinology. 2021; 67(4): 36-45. (In Russ.) https://doi.org/10.14341/probl12779
46.    Lutosławska G. Interleukin-6 as an adipokine and myokine: the regulatory role of cytokine in adipose tissue and skeletal muscle metabolism. Hum Mov. 2012; 13: 372---9, http://dx.doi.org/10.2478/v10038-012-0045-y.
47.    Paula FMM, Leite NC, Vanzela EC, et al. Exercise increases pancreatic -cell viability in a model of type 1 diabetes through IL-6 signaling. FASEB J. 2015; 29: 1805---16, http://dx.doi.org/10.1096/fj.14-264820.
48.    Shephard RJ, Johnson N. Effects of physical activity upon the liver. Eur J Appl Physiol. 2015; 115: 1-46, http://dx.doi.org/10.1007/s00421-014-3031-6.
49.    Lustosa LP, Máximo Pereira LS, Coelho FM, et al. Impact of an exercise program on muscular and functional performance and plasma levels of interleukin 6 and soluble receptor tumor necrosis factor in prefrail community-dwelling older women: a randomized controlled trial. Arch Phys Med Rehabil. 2013; 94: 660-6, http://dx.doi.org/10.1016/j.apmr.2012.11.013.
50.    He Z, Tian Y, Valenzuela PL, et al. Myokine/Adipokine Response to “Aerobic” Exercise: Is It Just a Matter of Exercise Load? Front Physiol. 2019; 10(4): 1379-1406. https://doi.org/10.3389/fphys.2019.00691
51.    Pedersen BK, Febbraio MA. Muscle as an Endocrine Organ: Focus on Muscle-Derived Interleukin-6. Physiol Rev. 2008; 88(4): 1379-1406. https://doi.org/10.1152/physrev.90100.2007
52.    Löffler D, Müller U, Scheuermann K, et al. Serum Irisin Levels Are Regulated by Acute Strenuous Exercise. J Clin Endocrinol Metab. 2015; 100(4): 1289-1299. https://doi.org/10.1210/jc.2014-2932
53.    Broholm C., Laye M.J., Brandt C. et al. LIF is a contraction-induced myokine stimulating human myocyte proliferation. J. Appl. Physiol. 2011; 111(1): 251–259;
54.    Otis J.S., Burkholder T.J., Pavlath G.K. Stretch-induced myoblast proliferation is dependent on the COX2 pathway. Exp. Cell Res. 2005; 310: 417–425;
55.    Pedersen B.K., Steensberg A., Fischer C. et al. Searching for the exercise factor : is IL-6 a candidate ?  J. Muscle Res. Cell. Motil. 2003; 24(2–3): 113–119;
56.    Pedersen L., Olsen C.H., Pedersen B.K. et al. Muscle-derived expression of the chemokine CXCL1 attenuates diet-induced obesity and improves fatty acid oxidation in the muscle. Am. J. Physiol. Endocrinol. Metab. 2012; 302(7): 831–840.
57.    Shestopalov, A. V., Ganenko, L. A., Grigorieva, T. V., Laikov, A. V., Vasiliev, I. Yu., Kolesnikova, I. M., etc. Adipokines and myokines as indicators of obesity phenotypes and their relationship with indicators of intestinal microbiome diversity. Bulletin of the Russian State Medical University. 2023;1: 49–58. DOI: 10.24075/vrgmu.2023.004
58.    Shestopalov A.V., Davydov V.V., Tumanyan G.T., Teplyakova E.D., Shkurat T.P., Mashkina E.V., Shkurat M.A., Gaponov A.M., Borisenko O.V., Roumiantsev S.A. The content of adipokines and myokines in the blood of children and adolescents with different genotypes according to the polymorphism rs662 of the paraoxonase-1 gene. Obesity and metabolism. 2023; 20(3): 227
59.    Adipokines and myokines as indicators of obese phenotypes and their association with the gut microbiome diversity indices. Bulletin of Russian State Medical University. 2023; 1: 45–54
60.    Kirk B, Feehan J, Lombardi G, Duque G. Curr Osteoporos Muscle, Bone, and Fat Crosstalk: The Biological Role of Myokines, Osteokines, and Adipokines. Rep. 2020 Aug; 18(4): 388-400. DOI: 10.1007/s11914-020-00599-y.PMID: 32529456 Review
61.    Yang M., Chen P., Jin H. et al. Circulating levels of irisin in middle-aged first-degree relatives of type 2 diabetes mellitus – correlation with pancreatic β-cell function. Diabetol. Metab. Syndr. 2014; 6(10: 133–139;
62.    Huh J.Y., Siopi A., Mougios V. et al. Irisin in response to exercise in humans with and without metabolic syndrome.  J. Clin.Endocrinol. Metab. 2015; 100: 453–457;
63.    Li Y., Li F., Lin B. et al. Myokine IL-15 regulates the crosstalk of co-cultured porcine skeletal muscle satellite cells and preadipocytes // Mol. Biol. Rep. 2014 V. 41, No. 11 P. 7543–7553.,
64.    Pierce J.R., Maples J.M.,Hickner R.C. IL-15 concentrations in skeletal muscle and subcutaneous adipose tissue in lean and obese humans: local effects of IL-15 on adipose tissue lipolysis. Am. J. Physiol. Endocrinol. Metab. 2015;  308(12); 1131–1139.
65.    Blüher S., Panagiotou G.,Petroff D. et al. Effects of a 1-year exercise and lifestyle intervention on irisin, adipokines, and inflammatory markers in obese children. Obesity. 2014;  22(7); 1701–1708
66.    Datta N.S. Muscle-bone and fat-bone interactions in regulating bone mass: do PTH and PTHrP play any role?  Endocrine. 2014; 47: 389–400;
67.    Lai X., Price C., Lu X.L. et al. Imaging and quantifying solute transport across periosteum: implications for muscle bone crosstalk. Bone. 2014; 66: 82–89.
68.    Henriksen T., Green C., Pedersen B.K. Myokines in myogenesis and health. Recent Pat. Biotechnol. 2012; 6(3): 167–171.
69.    Laurens C, Bergouignan A, Moro C. Exercise-Released Myokines in the Control of Energy Metabolism. Front Physiol. 2020; 11: 91. https://doi.org/10.3389/fphys.2020.00091
70.    Ahima RS, Park H-K. Connecting Myokines and Metabolism. Endocrinol Metab. 2015; 30(3): 235. https://doi.org/10.3803/EnM.2015.30.3.235
71.    A systematic review of ‘‘myokines and metabolic regulation’’ Henry H. León-Ariza, María P. Mendoza-Navarrete, María I. Maldonado-Arango, Daniel A. Botero-Rosas October 2018 Apunts Med Esport. 2018; 53(200): 155-162.
72.    Giudice J, Taylor JM. Muscle as a paracrine and endocrine organ. Curr Opin Pharmacol. 2017; 34: 49-55. http://dx.doi.org/10.1016/j.coph.2017.05.005
73.    Barbalho SM, Flato UAP, Tofano RJ, Goulart RA, Guiguer EL, Detregiachi CRP, Buchaim DV,AraújoAC, Buchaim RL, Reina FTR, Biteli P, Reina DOBR, Bechara MD. Physical Exercise and Myokines: Relationships with Sarcopenia and Cardiovascular Complications. Int J Mol Sci. 2020; 21(10): 3607. PMID: 32443765. PMCID: PMC7279354.
74.    Laskou F., Fuggle N.R., Patel H.P., Jameson, Cooper C., Dennison E. Associations of osteoporosis and sarcopenia with frailty and multimorbidity among participants of the Hertfordshire Cohort Study. J Cachexia Sarcopenia Muscle. 2022; 13: 220-229https://doi.org/10.1002/jcsm.12870
75.    Severinsen M.C.K., Pedersen B.K., Muscle-organ crosstalk: the emerging roles of myokines. Endocr. Rev. 2020; 41 https://doi.org/10.1210/endrev/bnaa016
76.    Braun T, Gautel M. Transcriptional mechanisms regulating skeletal muscle differentiation, growth and homeostasis. Nat Rev Mol Cell Biol. 2011; 12(6): 349-361. doi: https://doi.org/10.1038/nrm3118
77.    Han HQ, Zhou X, Mitch WE, Goldberg AL. Myostatin/activin pathway antagonism: Molecular basis and therapeutic potential. Int J Biochem Cell Biol. 2013; 45(10): 2333-2347. doi: https://doi.org/10.1016/j.biocel.2013.05.019
78.    Chan MHS, Carey AL, Watt MJ, et al. Cytokine gene expression in human skeletal muscle during concentric contraction: evidence that IL-8, like IL-6, is influenced by glycogen availability. Am J Physiol Regul Integr Comp Physiol. 2004; 287(2): R322-7. https://doi.org/10.1152/ajpregu.00030.2004.
79.    Heinrich PC, Behrmann I, Haan S, et al. Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J. 2003; 374(1): 1-20. https://doi.org/10.1042/bj20030407.
80.    Line Pedersen and Pernille Hojman Muscle-to-organ cross talk mediated by myokines Adipocyte. Landes Bioscience . 2012; 1(3): 164–167.
81.    Rekha Balakrishnan, Debbie C Thurmond Mechanisms by Which Skeletal Muscle Myokines Ameliorate Insulin Resistance Int J Mol Sci  2022;   23(9): 4636. PMID: 35563026 PMCID: PMC9102915DOI: 10.3390/ijms23094636.
82.    Tkachuk VA, Vorotnikov AV. Molecular Mechanisms of Insulin Resistance Development. Diabetes mellitus. 2014; 17(2): 29-401 [(In Russ.)] doi: 10.14341/DM2014229-40 https://cyberleninka.ru/article/n/molekulyarnye-mehanizmy-razvitiya-rezistentnosti-k-insulinu
83.    Lackey DE, Olefsky JM. Regulation of metabolism by the innate immune system. Nat Rev Endocrinol. 2016; 12(1): 15-28. doi: 10.1038/nrendo.2015.189
84.    Martyushev-Poklad A.V., Yankevich D.S., Petrova M.V., Savitskaya N.G. Two models of the development of insulin resistance and a strategy to combat age-related diseases: a review of the literature. Problems of Endocrinology. 2022; 68(4): 59-68. https://doi.org/10.14341/probl13090
85.    Stafeev IS, Menshikov MY, Tsokolaeva ZI, et al. Molecular Mechanisms of Latent Infl ammation in Metabolic Syndrome. Possible Role of Sirtuins and Peroxisome Proliferator-Activated Receptor Type gamma. Biochemistry (Mosc). 2015; 80(10): 1217-1226. doi: 10.1134/S0006297915100028
86.    Boura-Halfon S, Zick Y. Phosphorylation of IRS proteins, insulin action, and insulin resistance. Am J Physiol Endocrinol Metab. 2009; 296(4): E581-591. doi: 10.1152/ajpendo.90437.2008
87.    Morino K, Petersen KF, Shulman GI. Molecular mechanisms of insulin resistance in humans and their potential links with mitochondrial dysfunction. Diabetes. 2006; 55 Suppl 2: S9-S15. doi: 10.2337/db06-S002
88.    Samuel VT, Petersen KF, Shulman GI. Lipid-induced insulin resistance: unravelling the mechanism. Lancet. 2010; 375(9733): 2267-2277. doi: 10.1016/s0140-6736(10)60408-4
89.    Liu YF, Herschkovitz A, Boura-Halfon S, et al. Serine phosphorylation proximal to its phosphotyrosine binding domain inhibits insulin receptor substrate 1 function and promotes insulin resistance. Mol Cell Biol. 2004; 24(21): 9668-9681. doi: 10.1128/MCB.24.21.9668-9681.2004
90.    Zick Y. Uncoupling insulin signalling by serine/threonine phosphorylation: a molecular basis for insulin resistance. Biochem Soc Trans. 2004; 32(Pt 5): 812-816. doi: 10.1042/BST0320812
91.    Hojlund K. Metabolism and insulin signaling in common metabolic disorders and inherited insulin resistance. Dan Med J. 2014; 61(7): B4890.
92.    Stafeev IS, Vorotnikov AV, Ratner EI, et al. Latent Infl ammation and Insulin Resistance in Adipose Tissue. Int J Endocrinol. 2017; 2017: 5076732. doi: 10.1155/2017/5076732
93.    Choi JH, Banks AS, Estall JL, et al. Anti-diabetic drugs inhibit obesity-linked phosphorylation of PPARgamma by Cdk5. Nature. 2010; 466(7305): 451-456. doi: 10.1038/nature09291
94.    Oriente F, Fernandez Diaz LC, Miele C, et al. Prep1 defi ciency induces protection from diabetes and increased insulin sensitivity through a p160-mediated mechanism. Mol Cell Biol. 2008; 28(18): 5634-5645. doi: 10.1128/MCB.00117-08
95.    Oriente F, Cabaro S, Liotti A, et al. PREP1 defi ciency downregulates hepatic lipogenesis and attenuates steatohepatitis in mice. Diabetologia. 2013; 56(12): 2713-2722. doi: 10.1007/s00125-013-3053-3
96.    Penkov DN, Egorov AD, Mozgovaya MN, Tkachuk VA. Insulin resistance and adipogenesis: role of transcription and secreted factors. Biochemistry (Mosc). 2013; 78(1): 8-18. doi: 10.1134/S0006297913010021
97.    Erickson HP. Irisin and FNDC5 in retrospect: An exercise hormone or a transmembrane receptor? Adipocyte. 2013; 2(4): 289-293. doi: 10.4161/ adip.26082
98.    Bostrom P, Wu J, Jedrychowski MP, et al. A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature. 2012; 481(7382): 463-468. doi: 10.1038/nature10777
99.    Chaudhury, A.; Duvoor, C.; Reddy Dendi, V.S.; Kraleti, S.; Chada, A.; Ravilla, R.; Marco, A.; Shekhawat, N.S.; Montales, M.T.; Kuriakose, K.; et al. Clinical Review of Antidiabetic Drugs: Implications for Type 2 Diabetes Mellitus Management. Front. Endocrinol. 2017; 8: 6.  
100.    Bouzakri, K.; Plomgaard, P.; Berney, T.; Donath, M.Y.; Pedersen, B.K.; Halban, P.A. Bimodal Effect on Pancreatic β-Cells of Secretory Products from Normal or Insulin-Resistant Human Skeletal Muscle. Diabetes. 2011; 60: 1111–1121.
101.    Narendran, P.; Jackson, N.; Daley, A.; Thompson, D.; Stokes, K.; Greenfield, S.; Charlton, M.; Curran, M.; Solomon, T.; Nouwen, A.; et al. Exercise to preserve β-cell function in recent-onset Type 1 diabetes mellitus (EXTOD)—A randomized controlled pilot trial. Diabet. Med. 2017; 34; 1521–1531.
102.    Paula, F.M.M.; Leite, N.C.; Vanzela, E.C.; Kurauti, M.A.; Freitas-Dias, R.; Carneiro, E.M.; Boschero, A.C.; Zoppi, C.C. Exercise increases pancreatic β-cell viability in a model of type 1 diabetes through IL-6 signaling. FASEB J. 2015; 29: 1805–1816.
103.    Camporez, J.P.G.; Jornayvaz, F.; Petersen, M.C.; Pesta, D.; Guigni, B.; Serr, J.; Zhang, D.; Kahn, M.; Samuel, V.T.; Jurczak, M.; et al. Cellular Mechanisms by Which FGF21 Improves Insulin Sensitivity in Male Mice. Endocrinology. 2013; 154: 3099–3109.
104.    Cuevas-Ramos, D.; Aguilar-Salinas, C.A.; Gómez-Pérez, F.J. Metabolic actions of fibroblast growth factor 21. Curr. Opin. Pediatr. 2012; 24: 523–529.
105.    Amir Levy, Y., Chiaraldi, T. P., Mudaliar, S. R., Phillips, S. A., and Henry, R. R. Excess IL-8 secretion by skeletal muscle in type 2 diabetes impairs tube growth: potential role of PI3K and Tie2 receptor. A.M. Physiology. Endocrinol. Metabolite. 2015; 309: E22–E34. doi: 10.1152/ajpendo.00513.2014
106.    Ellingsgaard, H.; Hauselmann, I.; Schuler, B.; Habib, A.M.; Baggio, L.L.; Zeman-Meier, D.; Eppler, E.; Bouzakri, K.; Wueest, S.; Muller, Y.; et al. Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells. Nat. Med. 2011; 17: 1481–1489.
107.    Li, Z.; Yang, Y.-L.; Zhu, Y.-J.; Li, C.-G.; Tang, Y.-Z.; Ni, C.-L.; Chen, L.-M.; Niu, W.-Y. Circulating Serum Myonectin Levels in Obesity and Type 2 Diabetes Mellitus. Exp. Clin. Endocrinol. Diabetes 2021; 129: 528–534.
108.    Barlow, J.P.; Solomon, T.P. Do skeletal muscle-secreted factors influence the function of pancreatic β-cells? Am. J. Physiol. Metab. 2018; 314: E297–E307.
109.    Raschke, S.; Elsen, M.; Gassenhuber, H.; Sommerfeld, M.; Schwahn, U.; Brockmann, B.; Jung, R.; Wisloff, U.; Tjonna, A.E.; Raastad, T.; et al. Evidence against a beneficial effect of irisin in humans. PLoS ONE. 2013; 8: e73680.
110.    Wei-Hua Jia, Nuo-Qi Wang, Lin Yin 1, Xi Chen, Bi-Yu Hou, Gui-Fen Qiang, Chi Bun Chan, Xiu-Ying Yang, Guan-Hua Du Effect of skeletal muscle phenotype and gender on fasting-induced myokine expression in mice Biochem Biophys Res Commun. 2019;; 514(2): 407-414. doi: 10.1016/j.bbrc.2019.04.155.  
111.    Erin E Terry, Xiping Zhang, Christy Hoffmann, Laura D Hughes 3, Scott A Lewis 1, Jiajia Li 1, Matthew J Wallace, Lance A Riley, Collin M Douglas, Miguel A Gutierrez-Monreal, Nicholas F Lahens, Ming C Gong, Francisco Andrade, Karyn A Esser, Michael E Hughes  Transcriptional profiling reveals extraordinary diversity among skeletal muscle tissues Elife. 2018; 7: e34613. doi: 10.7554/eLife.34613.  
112.    I.I. Dedov, V.A. Tkachuk, N.B. Gusev, V.P. Shirinsky A.V. Vorotnikov, T.N. Kochegura A.Yu. Mayorov, M.V. Shestakova Type 2 diabetes mellitus and metabolic syndrome: molecular mechanisms, key signaling pathways and identification of biotargets for new drugs © Russian Association of Endocrinologists. 2018., doi: 10.14341/DM9730 Diabetes Mellitus. 2018; 21(5): 364-375
113.    Hong-KunWu, YanZhang, Chun-MeiCao, XinliHu, MengFang, YuanYao, LiJin, GengjiaChen, PengJiang, ShuoZhang, RuishengSong, WeiPeng, FenghuaLiu, JiaojiaoGuo, LifeiTang, YanyunHe, Dan Shan, Jin Huang, Zhuan Zhou, Dao Wen Wang, Fengxiang Lv, Rui-Ping Xiao  Regulates Systemic Insulin Response and Metabolic Homeostasis Circulation. 2019 Feb 12; 139(7): 901-914. doi: 10.1161/CIRCULATIONAHA.118.037216. PMID: 30586741 DOI: 10.1161/CIRCULATIONAHA.118.037216
114.    Zhengtang Qi, Jie Xia, Xiangli Xue, Jiatong Liu, Xue Zhang, Xingtian Li, Wenbin Liu, Lu Cao, Lingxia Li, Zhiming Cui, Zhuochun Huang, Benlong Ji, Qiang Zhang, Shuzhe Ding, Weina Liu Stress-induced myonectin improves glucose homeostasis by inhibiting glycemic response to HPA axis doi: https://doi.org/10.1101/838003
115.    Salikhova Y., Mindubaуeva F., Shukurov F., Niyazova Y., Nauryzov N., Khalimova F., Bilalova D., Kharisova N., Akimzhanova N.. Comparative study of Heart Rate variability in pregnant women living in conditions of High-mountain Hypoxia of the Pamirs and the steppe zone of Central Kazakhstan. Research Journal of Pharmacy and Technology 2023; 16(7): 3269-4. doi: 10.52711/0974-360X.2023.00538.
116.    Liu R., Zhang Q., Peng N. et al. Inverse correlation between serum irisin and cardiovascular risk factors among Chinese overweight/obese population. BMC Cardiovasc. Disord. 2021; 21:Art. No. 570.
117.    Mai S., Grugni G., Mele C. et al. Irisin levels in genetic and essential obesity: clues for a potential dual role. Sci. Rep. 2020. 10: Art. No. 1020.
118.    Choi Y.-K., Kim M.-K., Bae K. H. et al.  Serum irisin levels in new-onset type 2 diabetes. Diabetes Res. Clin. Pract. 2013; 100: 96-101.
119.    Zhu D., Wang H., Zhang J. et al. Irisin improves endothelial function in type 2 diabetes through reducing oxidative/nitrative stresses. J. Mol. Cell. Cardiol. 2015; 87: 138-147.
120.    Bayrasheva V.K. Modeling of diabetes mellitus and diabetic nephropathy in experiment. Modern problems of science and education. 2015; 4. URL: https://science-education.ru/ru/article/view?id=21024 (access date: 02/09/2024). UDC 616.61:616.379-008.64:612.084 DOI 10.17513/spno.127-21024
121.    Bayrasheva V.K., Babenko A.Yu., Dmitriev Yu.V., Bairamov A.A., Chefu S.G., Shatalov I.S., Pchelin I.Yu., Ivanova A.N., Grineva E.N. A novel model of type 2 diabetes and diabetic nephropathy in rats. Translational Medicine. 2016; 3(4): 44-55. (In Russ.) https://doi.org/10.18705/2311-4495-2016-3-4-44-55
122.    N. Zakharova, T. A. Kironenko, K. G. Milovanova, A. A. Orlova, E. Yu. Dyakova, Yu. G. Kalinnikova, A. V. Chibalin, L. V. The influence of forced running loads on the content of myokines in the skeletal muscles of mice with a model of type II diabetes mellitus 2022 Kapilevich Russian Physiological Journal named after. THEM. Sechenova. 2021; 107( 6-7): 864-875 -10-06T22:36:55Z
123.    K. G. Milovanova, I. Yu. Shuvalov, A. V. Moiseenko, L. V. Kapilevich The influence of dynamic loads on the concentration of myokines in the plasma of mice. Physical culture, healthcare and education: materials of the XV International Scientific and Practical conference dedicated to the memory of V. S. Pirussky. Tomsk. 2021: 345-351.
124.    L. V. Kapilevich, T. A. Kironenko, A. N. Zakharova et al. Content of interleukins 6 and 15 in plasma in mice after exercise. Receptors and intracellular signaling: international conference, May 22-25, 2017 g.: collection of articles. Pushchino. 2017; 1: 737-742. URL: http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000646250
125.    L. V. Kapilevich, A. N. Zakharova, T. A. Kironenko et al. The influence of running loads on body weight and the content of myokines in skeletal muscles in diabetes mellitus (experimental study). Innovative transformations in the field physical culture, sports and tourism: collection of materials of the XXIV All-Russian Scientific and Practical Conference. September 27 – October 2, 2021, Novomikhailovsky. Rostov n/d, 2021. pp. 220-224. URL: http://vital.lib.tsu.ru/vital/access/manager/Repository/koha:000894195
126.    Kironenko, K. G. Milovanova et al. Treadmill training effect on the myokines content in skeletal muscles of mice with a metabolic disorder model. Frontiers in Psychology. 2021; 12: 709039 (1-13). URL: http://vital.lib.tsu.ru/vital/access/manager/Repository/koha:000892334
127.    Kironenko T. A. Production of myokines and the concentration of monovalent cations in the muscle tissue of mice during physical exercise: dissertation for the degree of candidate of biological sciences: 03.03.01 / Kironenko Tatyana Aleksandrovna; scientific hands Kapilevich L. V.; state Univ. - Tomsk: [b.i.], 2021. URL: http://vital.lib.tsu.ru/vital/access/manager/Repository/koha:000718311
128.    Graf C, Ferrari N. Metabolic Health-The Role of AdipoMyokines. Int J Mol Sci. 2019; 20 (24): 6159. DOI: 10.3390/ ijms20246159.
129.    Doumatey AP, Bentley AR, Zhou J, Huang H, Adeyemo A, Rotimi CN. Paradoxical Hyperadiponectinemia is Associated With the Metabolically Healthy Obese (MHO) Phenotype in African Americans. J Endocrinol Metab. 2012; 2(2): 51–65. DOI: 10.4021/jem95W.
130.    Bluher S. Metabolically healthy obesity from childhood to adulthood — does weight status alone matter? Metabolism. 2014; 63: 1084–109.
131.    Wang HY. Plasma asprosin concentrations are increased in individuals with glucose dysregulation and correlated with insulin resistance and first-phase insulin secretion. Mediators of Inflammation. 2018; ID 9471583.
132.    Amor M, Itariu BK, Moreno-Viedma V, Keindl M, Jürets A, Prager G, et al. Serum Myostatin is Upregulated in Obesity and Correlates with Insulin Resistance in Humans. Exp Clin Endocrinol Diabetes. 2019; 127 (8): 550–6.
133.    Staiger H, Keuper M, Berti L, Hrabe de Angelis M, Häring HU. Fibroblast Growth Factor 21-Metabolic Role in Mice and Men. Endocr Rev. 2017; 38 (5): 468–88.
134.    Hu C, Zhang X, Zhang N, Wei WY, Li LL, Ma ZG, et al. Osteocrin attenuates inflammation, oxidative stress, apoptosis, and cardiac dysfunction in doxorubicin-induced cardiotoxicity. Clin Transl Med. 2020; 10 (3): e124.
135.    Fu J, Li Y, Esangbedo IC, Li G, Feng D, Li L, et al. Circulating Osteonectin and Adipokine Profiles in Relation to Metabolically Healthy Obesity in Chinese Children: Findings From BCAMS. J Am Heart Assoc. 2018; 7 (23): e009169. DOI: 10.1161/ JAHA.118.009169
136.    Fiuza-Luces C, Garatachea N, Berger NA, Lucia A. Exercise is the real polypill. Physiology (Bethesda) 2013; 28(5): 330–58. doi:10.1152/physiol.00019.2013
137.    Eckardt K, Görgens SW, Raschke S, Eckel J. Myokines in insulin resistance and type 2 diabetes. Diabetologia. 2014; 57(6): 1087–99. doi:10.1007/s00125-014-3224-x
138.    Steensberg A, Febbraio MA, Osada T, Schjerling P, van Hall G, Saltin B, et al. Interleukin-6 production in contracting human skeletal muscle is influenced by pre-exercise muscle glycogen content. J Physiol 2001; 537(Pt 2): 633–9. doi:10.1111/j.1469-7793.2001.00633.x
139.    Al-Khalili L, Bouzakri K, Glund S, Lönnqvist F, Koistinen HA, Krook A. Signaling specificity of interleukin-6 action on glucose and lipid metabolism in skeletal muscle. Mol Endocrinol (2006) 20(12): 3364–75. doi:10.1210/me.2005-0490 PubMed Abstract | CrossRef Full Text | Google Scholar
140.    Carey AL, Steinberg GR, Macaulay SL, et al. Interleukin6 increases insulin-stimulated glucose disposal in humans and glucose uptake and fatty acid oxidation in vitro via AMP-activated protein kinase. Diabetes. 2006; 55: 2688---97, http://dx.doi.org/10.2337/db05-1404
141.    Harder-Lauridsen NM, Krogh-Madsen R, Holst JJ, Plomgaard P, Leick L, Pedersen BK, et al. Effect of IL-6 on the insulin sensitivity in patients with type 2 diabetes. Am J Physiol Endocrinol Metab (2014) 306(7): E769–78. doi:10.1152/ajpendo.00571.2013 PubMed Abstract | CrossRef Full Text | Google Scholar
142.    Jiang LQ, Duque-Guimaraes DE, Machado UF, Zierath JR, Krook A. Altered response of skeletal muscle to IL-6 in type 2 diabetic patients. Diabetes (2013); 62(2): 355–61. doi:10.2337/db11-1790
143.    Prokopchuk O, Liu Y, Wang L, Wirth K, Schmidtbleicher D, Steinacker JM. Skeletal muscle IL-4, IL-4Ralpha, IL-13 and IL-13Ralpha1 expression and response to strength training. Exerc Immunol Rev (2007); 13: 67–75.
144.    Görgens SW, Raschke S, Holven KB, Jensen J, Eckardt K, Eckel J. Regulation of follistatin-like protein 1 expression and secretion in primary human skeletal muscle cells. Arch Physiol Biochem (2013); 119(2): 75–80. doi:10.3109/13813455.2013.768270 PubMed Abstract | CrossRef Full Text | Google Scholar
145.    Lee HJ, Lee JO, Lee YW, Kim SA, Park SH, Kim HS. Kalirin, a GEF for Rac1, plays an important role in FSTL-1-mediated glucose uptake in skeletal muscle cells. Cell Signal (2016); 29: 150–7. doi:10.1016/j.cellsig.2016.10.013 CrossRef Full Text | Google Scholar
146.    Colberg SR, Sigal RJ, Yardley JE, Riddell MC, Dunstan DW, Dempsey PC, et al. Physical activity/exercise and diabetes: a position statement of the American Diabetes Association. Diabetes Care (2016); 39(11): 2065–79. doi:10.2337/dc16-1728
147.    Brian P Carson The Potential Role of Contraction-Induced Myokines in the Regulation of Metabolic Function for the Prevention and Treatment of Type 2 Diabetes 2017; May 2: 8: 97. doi: 10.3389/fendo.2017.00097. eCollection 2017. PMID: 28512448 PMCID: PMC5411437 DOI: 10.3389/fendo.2017.00097
148.    Guo T, Jou W, Chanturiya T, et al. Myostatin Inhibition in Muscle, but Not Adipose Tissue, Decreases Fat Mass and Improves Insulin Sensitivity. Calbet JAL, ed. PLoS One. 2009; 4(3): e4937. https://doi.org/10.1371/journal.pone.0004937
149.    Bond ND, Guo J, Hall KD, McPherron AC. Modeling Energy Dynamics in Mice with Skeletal Muscle Hypertrophy Fed High Calorie Diets. Int J Biol Sci. 2016; 12(5): 617-630. https://doi.org/10.7150/ijbs.13525
150.    Zhang C, McFarlane C, Lokireddy S, et al. Myostatindeficient mice exhibit reduced insulin resistance through activating the AMP-activated protein kinase signalling pathway. Diabetologia. 2011; 54(6): 1491-1501. https://doi.org/10.1007/s00125-011-2079-7
151.    Hoppeler H. Molecular networks in skeletal muscle plasticity. J Exp Biol. 2016;219:205---13, http://dx.doi. org/10.1242/jeb.128207.
152.    Belaya ZhE, Smirnova OM, Dedov II. Role of exercise in health and in diabetes mellitus.Problemy endokrinologii. 2005; 51(2): 28- 37. (In Russ)]]
153.    Danilov K.,  Sidorenko S.,  Milovanova K., Klimanova E.,  Kapilevich L.,  Orlov S. Electrical pulse stimulation decreases electrochemical Na+ and K+ gradients in C2C12 myotubes. Biochemical and Biophysical Research CommunicationsVolume 493, Issue 2, 18 November 2017: 875-878 https://doi.org/10.1016/j.bbrc.2017.09.133
154.    Kainulainen H, Papaioannou KG, Silvennoinen M, et al. Myostatin/ activin blocking combined with exercise reconditions skeletal muscle expression profile of mdx mice. Mol Cell Endocrinol. 2015; 399: 131-142. https://doi.org/10.1016/j.mce.2014.10.001
155.    Ko I.G., Jeong J.W., Kim Y.H., et al. Aerobic Exercise Affects Myostatin Expression in Aged Rat Skeletal Muscles: A Possibility of Antiaging Effects of Aerobic Exercise Related with Pelvic Floor Muscle and Urethral Rhabdosphincter. Int Neurourol J. 2014; 18(2): 77. https://doi.org/10.5213/inj.2014.18.2.77
156.    MingHong Shao, QiYang Wang, QiuNan Lv, YuQiong Zhang, GuoXi Gao, Sheng Lu Advances in the research on myokine-driven regulation of bone metabolism Open Access Published: November 19, 2023. DOI:https://doi.org/10.1016/j.heliyon.2023.e22547
157.    Khalafi M, Alamdari KA, Symonds ME, et al. Impact of acute exercise on immediate and following early postexercise FGF-21 concentration in adults: systematic review and meta-analysis. Hormones. 2021; 20(1): 23-33. https://doi.org/10.1007/s42000-020-00245-3
158.    Hansen JS, Pedersen BK, Xu G, et al. Exercise-Induced Secretion of FGF21 and Follistatin Are Blocked by Pancreatic Clamp and Impaired in Type 2 Diabetes. J Clin Endocrinol Metab. 2016; 101(7): 2816-2825. https://doi.org/10.1210/jc.2016-1681
159.    Zhang Y, Li R, Meng Y, et al. Irisin Stimulates Browning of White Adipocytes Through Mitogen-Activated Protein Kinase p38 MAP Kinase and ERK MAP Kinase Signaling. Diabetes. 2014; 63(2): 514-525. https://doi.org/10.2337/db13-1106
160.    Xiong X-Q, Chen D, Sun H-J, et al. FNDC5 overexpression and irisin ameliorate glucose/lipid metabolic derangements and enhance lipolysis in obesity. Biochim Biophys Acta - Mol Basis Dis. 2015; 1852(9): 1867-1875. https://doi.org/10.1016/j.bbadis.2015.06.017
161.    Miyamoto-Mikami E, Sato K, Kurihara T, et al. Endurance TrainingInduced Increase in Circulating Irisin Levels Is Associated with Reduction of Abdominal Visceral Fat in Middle-Aged and Older Adults. Kaser S, ed. PLoS One. 2015; 10(3): e0120354. https://doi.org/10.1371/journal.pone.0120354
162.    Park M-J, Kim D-I, Choi J-H, et al. New role of irisin in hepatocytes: The protective effect of hepatic steatosis in vitro. Cell Signal. 2015; 27(9): 1831-1839. https://doi.org/10.1016/j.cellsig.2015.04.010
163.    Sujin Kim, Ji-Young Choi, Sohee Moon, Dong-Ho Park, Hyo-Bum Kwak, Ju-Hee KangPflugers Arch . 2019; Mar; 471(3): 491-505.  doi: 10.1007/s00424-019-02253-8. Epub 2019 Jan 9. Roles of myokines in exercise-induced improvement of neuropsychiatric function expand PMID: 30627775 DOI: 10.1007/s00424-019-02253-8
164.    Pedersen BK. The diseasome of physical inactivity and the role of myokines in muscle-fat cross talk. J Physiol. 2009; 587 (Pt 23): 5559-5568. doi: 10.1113/jphysiol.2009.179515. Epub 2009 Sep 14. Review.
165.    Kapilevich L. V., Kironenko T. A., Zakharova A. N. [et al.] The content of interleukins 6 and 15 in plasma in mice after exercise // Receptors and intracellular signaling: international conference, 22-25 May 2017: collection of articles. Pushchino, 2017; 1: 737-742. URL: http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000646250
166.    Zakharova A. N. Features of cerebral hemodynamics and the production of myokines during physical activity of various types: dissertation ... candidate of Biological Sciences. 2017; 171: http://www.dslib.net/fiziologia/osobennosti-cerebralnoj-gemodinamiki-i-produkcija-miokinov-pri-fizicheskih.html
167.    Kapilevich L. V., Kironenko T. A., Zakharova A. N. [et al.] The content of interleukins 6 and 15 in plasma in mice after exercise // Receptors and intracellular signaling: international conference, 22-25 May 2017: collection of articles. Pushchino, 2017; 1: 737-742. URL: http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000646250
168.    Zakharova A. N., Kironenko T. A., Milovanova K. G., Orlova A. A., Dyakova E. Yu., Kalinnikova Yu. G., A. V. Chibalin, L. V. Kapilevich Russian physiological journal named after. THEM. Sechenova, 2021, T. 107, No. 6-7: 864-875 The effect of forced running loads on the content of myokines in the skeletal muscles of mice with a model of type II diabetes mellitus Date of publication in the registry: 2022-10-06T22:36:55Z
169.    Kapilevich L. V. Myokines as a promising marker of metabolic disorders and physical activity . L. Kapilevich, S. Orlov, A. Kabachkova. AIP Conference Proceedings. 2015. Vol. 1688.:030030-1-030030-4. URL: http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000524691
170.    Kapilevich L. V. Myokines as a promising marker of metabolic disorders and physical activity / L. Kapilevich, S. Orlov, A. Kabachkova. AIP Conference Proceedings. 2015. Vol. 1688.:030030-1-030030-4. URL: http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000524691
171.    Milovanova K. G., Shuvalov I. Yu., Moiseenko A. V., Kapilevich L. V.  The influence of dynamic loads on the concentration of myokines in the plasma of mice. Physical culture, health care and education: materials of the XV International Scientific and Practical Conference, dedicated to the memory of V. S. Pirussky, November 18, 2021 Tomsk, 2021.:345-351.URL: http://vital.lib.tsu.ru/vital/access/manager/Repository/koha:000896674
172.    Milène Catoire 1, Marco Mensink, Eric Kalkhoven, Patrick Schrauwen, Sander Kersten Physiological genomics. 1 Apr 2014;46(7):256-67. doi:10.1152/physiogenomics.00174.2013. Epub 2014, February 11. Original text: Identification of human exercise-induced myokines using secretome analysis PMID: 24520153 DOI: 10.1152/physiolgenomics.00174.2013
173.    Berezina A.V., Belyaeva O.D., Bazhenova E.A. and others. Features of fat oxidation during physical activity of varying intensity in patients with abdominal obesity // Probl. endocrinology. 2010. No. 56. (2). pp. 20-26
174.    Zhu, Y., Liu, Q., Zhu, Y., Guo, T., Jin, M., Hao, J., Qi, C., Miao, X., Xi, D., Fan, J. and Li, J. (2022) Effects of Common Myokines on Diabetes Mellitus. Journal of Diabetes Mellitus, 12, 153-166. doi: 10.4236/jdm.2022.123013.
175.    Timofeev A.V. Review of clinical trials of new methods for the prevention and treatment of diabetes mellitus in children and adolescents “Hi+Med. High technologies in medicine." 2013; No. 2 (16): 44–46.
176.    https://dni24.com/exclusive/101096-rossiyskie-uchenye-razrabatyvayut-novyy-metod-lecheniya-autizma-i-diabeta.html
177.    Gérald J Prud'homme Prevention of autoimmune diabetes by DNA vaccination Expert Rev Vaccines. 2003; Aug; 2(4): 533-40. DOI: 10.1586/14760584.2.4.533PMID: 14711337
178.    Bryan Ceballos,Michael Alexander,Jonathan R.T. Lakey Advanced Approaches in Immunotherapy for the Treatment of Type 1 Diabetes Mellitus EMJ Diabet. 2020; DOI/10.33590/emjdiabet/20-00062. https://doi.org/10.33590/emjdiabet/20-00062.
179.    Mai Charlotte Krogh Severinsen, Bente Klarlund Pedersen Myokines in Muscle-Organ Crosstalk Endocrine Reviews, Volume 41, Issue 4, August 2020; bnaa016 Pages 594–609, https://doi.org/10.1210/endrev/bnaa016
180.    P. Kumar, Titi Xavier Mangalathil, Vikas Choudhary. An experimental study to assess the effectiveness of structured teaching programme on knowledge regarding the management of diabetes mellitus among G.N.M. students in selected nursing school at Sikar, Rajasthan. Asian J. Management. 2014; 5(3): July-September, 329-331.
181.    Chauhan H.V. In-Vivo Antidiabetic, Lipid Lowering and Antioxidant Activities of Methanolic Extaract of Lawsonia inermis Leaves. Research J. Pharm. and Tech. 4(5): May 2011; Page 764-767.
182.    Bhutkar M. A., Bhise S. B. Comparative Studies on Antioxidant Activity of Some Antidiabetic Plants. Research J. Pharm. and Tech. 2011; 4(9): 1409-1412.
183.    Harinarayan Singh Chandel, A K Pathak, Mukul Tailang. Characterization of Some Herbal Antidiabetic Drugs in Polyherbal Formulation by Microscopy. Research J. Pharm. and Tech. 2011; 4 (1): 131-145.
184.    TE Gopala Krishna Murthy, C Mayuren. Effect of Ramipril on the Pharmacodynamics of Gliclazide in Diabetic Rats. Research J. Pharm. and Tech. 2009; 2(1): Jan.-Mar. 120-122.
185.    Sarika S. Lokhande, Raje V. N., More S. S., Pawar S. S. Role of Pharmacist in Prevention and Management of Diabetics. Asian Journal of Pharmaceutical Research. 2023; 13(2): 95-8 DOI: 10.52711/2231-5691.2023.00019
186.    Klimontov V.V., Berikov V.B., Saik O.V. Artificial intelligence in diabetology.  Diabetes mellitus. 2021; 24(2): 156-166. https://doi.org/10.14341/DM12665
187.    Schönenberger KA, Cossu L, Prendin F, et al. Digital solutions to diagnose and manage postbariatric hypoglycemia. Front Nutr. 2022; 9. https://doi.org/10.3389/fnut.2022.855223
188.    Suplotova L.A., Alieva O.O. Evolution of blood glucose self-monitoring technology. Diabetes mellitus. 2023; 26(6): 566-574. (In Russ.) https://doi.org/10.14341/DM13063
189.    Prachi Gupta, Manju Bala, Sanjeev Gupta, Anita Dua, Rajesh Dabur, Elisha R. Injeti, Ashwani Mittal Efficacy and risk profile of anti-diabetic therapies: Conventional vs traditional drugs—A mechanistic revisit to understand their mode of action. Pharmacological Research. 2016; 113 (Pt A): 636-674   DOI:10.1016/j.phrs.2016.09.029
190.    Fabian Sanchis-Gomar, Sergio Lopez-Lopez, Carlos Romero-Morales, Nicola Maffulli, Giuseppe Lippi, Helios Pareja-GaleanoNeuromuscular Electrical Stimulation: A New Therapeutic Option for Chronic Diseases Based on Contraction-Induced Myokine Secretion REVIEW article Front. Physiol., 28 November 2019 Sec. Striated Muscle Physiology Volume 10 - 2019

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available