Author(s): Prabha Bhong, Suvarna Ingale, Pallavi Jadhav

Email(s): prabhanbhong@gmail.com

DOI: 10.52711/0974-360X.2024.00791   

Address: Prabha Bhong1*, Suvarna Ingale2 , Pallavi Jadhav3
1Department of Pharmacology, Marathwada Mitramandal’s College of Pharmacy, Thergaon, Pune 411033. Maharashtra, India.
2Department of Pharmacology, SCES’s Indira College of Pharmacy, Pune - 411033. Maharashtra, India.
3Department of Pharmacology, Pratibhatai Pawar College of Pharmacy, Shrirampur. Maharashtra, India.
*Corresponding Author

Published In:   Volume - 17,      Issue - 10,     Year - 2024


ABSTRACT:
A variety of age-related disorders can include Parkinson's disease, which is regarded as by a gradual but irreversible decline in brain function. It is primarily linked to many biochemical pathways that underlie the deterioration of dopaminergic neurons substantia nigra pars compacta (SNpc) in the brain. These chemical processes that underlie neuronal loss remain mysterious. The Parkinson's disease treatments now on the market are not always helpful or suitable for all Parkinson's sufferers. These treatments simply address the symptoms; they neither slow the progression of the disease nor replace the destroyed dopaminergic neurons. We would like to provide an extensive summary of the different molecular mechanisms involved in Parkinson’s disease such as oxidative stress, protein aggregation, mitochondrial dysfunction, ferroptosis, and gut dysbiosis that lead to the deterioration of dopaminergic neurons. The intricate interactions between these molecular pathways further complicate the pathogenesis of Parkinson's disease (PD) and pose considerable obstacles for therapeutic development. Furthermore, the pathophysiology of Parkinson's disease has been observed in relation to several neurotransmitters, including but not limited to dopamine, acetylcholine, serotonin, glutamate, and gamma amino butyric acid. This review spur research into a wide range of ligands that may improve treatment outcomes and/or lessen adverse effects in Parkinson's disease.


Cite this article:
Prabha Bhong, Suvarna Ingale , Pallavi Jadhav. Molecular Mechanisms Involved in Pathogenesis of Parkinson's Disease. Research Journal of Pharmacy and Technology. 2024; 17(10):5167-4. doi: 10.52711/0974-360X.2024.00791

Cite(Electronic):
Prabha Bhong, Suvarna Ingale , Pallavi Jadhav. Molecular Mechanisms Involved in Pathogenesis of Parkinson's Disease. Research Journal of Pharmacy and Technology. 2024; 17(10):5167-4. doi: 10.52711/0974-360X.2024.00791   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2024-17-10-76


REFERENCES:
1.    Dey A, De JN. Possible anti-Parkinson’s disease therapeutics from nature: a review. Studies in Natural Products Chemistry. 2015; 44: 447-520. doi:  https://doi.org/10.1016/b978-0-444-63460-3.00009-2
2.    MacMahon Copas AN, McComish SF, Fletcher JM, Caldwell MA. The pathogenesis of Parkinson's disease: a complex interplay between astrocytes, microglia, and T lymphocytes?. Frontiers in Neurology. 2021; 12: 666737. DOI: https://doi.org/10.3389/fneur.2021.666737
3.    Kouli A et al. Parkinson’s disease: etiology, neuropathology, and pathogenesis. Exon Publications. 2018: 3-26.
4.    Maiti P et al. Current understanding of the molecular mechanisms in Parkinson's disease: Targets for potential treatments. Translational Neurodegeneration. 2017; 6: 1-35. doi:10.1186/s40035-017-0099-z
5.    Rajesh Kumar Reddy P, Saravanan J and Praveen T K. Evaluation of Neuroprotective Activity of Melissa officinalis in MPTP Model of Parkinson’s Disease in Mice. Research J. Pharm. and Tech. 2019; 12(5): 2103-2108.
6.    Emamzadeh FN, Surguchov A. Parkinson’s disease: biomarkers, treatment, and risk factors. Frontiers in Neuroscience. 2018;  12: 612. doi:doi.org/10.3389/fnins.2018.00612
7.    Braak H et al. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiology of Aging. 2003; 24(2): 197-211. doi: /doi.org/10.1016/S0197-4580(02)00065-9
8.    H. S. Baul, M. Rajiniraja. Molecular Docking Studies of Selected Flavonoids on Inducible Nitric Oxide Synthase (INOS) in Parkinson’s Disease. Research J. Pharm. and Tech. 2018; 11(8): 3685-3688. doi: 10.5958/0974-360X.2018.00676.5
9.    Dong-Chen X, et al. Signaling pathways in Parkinson’s disease: molecular mechanisms and therapeutic interventions. Signal Transduction and Targeted Therapy. 2023; 8(1): 73. doi: https://doi.org/10.1038/s41392-023-01353-3
10.    Padilla-Godínez FJ, et al. Protein misfolding and aggregation: the relatedness between Parkinson’s disease and hepatic endoplasmic reticulum storage disorders. International Journal of Molecular Sciences. 2021; 22(22): 12467. doi: https://doi.org/10.3390/ijms222212467
11.    Himadri Shekhaar Baul, Muniyan Rajiniraja. Favorable binding of Quercetin to α-Synuclein as potential target in Parkinson disease: An Insilico approach. Research J. Pharm. and Tech. 2018; 11(1): 203-206 doi: 10.5958/0974-360X.2018.00038.0
12.    Zhang Z. Neurodegeneration: potential causes, prevention, and future treatment options. Nature Precedings. 2011; Sep 6: 1-1. doi: https://doi.org/10.1038/npre.2011.6324.1
13.    Wen JH et al. Cellular Protein Aggregates: Formation, Biological Effects, and Ways of Elimination. International Journal of Molecular Sciences. 2023; 24(10): 8593. doi: https://doi.org/10.3390/ijms24108593
14.    Tu HY et al. α‐synuclein suppresses microglial autophagy and promotes neurodegeneration in a mouse model of Parkinson’s disease. Aging cell. 2021; 20(12): e13522. doi: 10.1111/acel.13522.
15.    Mattson MP. Pathways towards and away from Alzheimer's disease. Nature. 2004; 430(7000): 631-9. doi: https://doi.org/10.1038/nature02621
16.    Ainslie A et al. Genome instability and loss of protein homeostasis: converging paths to neurodegeneration?. Open Biology. 2021; 11(4): 200296. doi: https://doi.org/10.1098/rsob.200296
17.    Weissman L et al. Defective DNA base excision repair in brain from individuals with Alzheimer's disease and amnestic mild cognitive impairment. Nucleic Acids Research. 2007; 35(16): 5545-55. doi:  https://doi.org/10.1093/nar/gkm605
18.    Zündorf G, Reiser G. Calcium dysregulation and homeostasis of neural calcium in the molecular mechanisms of neurodegenerative diseases provide multiple targets for neuroprotection. Antioxidants and Redox Signaling. 2011; 14(7): 1275-88. doi: https://doi.org/10.1089/ars.2010.3359
19.    Bucciantini M et al. Prefibrillar amyloid protein aggregates share common features of cytotoxicity. Journal of Biological Chemistry. 2004; 279(30): 31374-82. doi: https://doi.org/10.1074/jbc.M400348200
20.    Demuro A et al. Calcium Dysregulation and Membrane Disruption as a Ubiquitous Neurotoxic Mechanism of Soluble Amyloid Oligomers. Journal of Biological Chemistry. 2005; 280(17): 17294-300. doi: https://doi.org/10.1074/jbc.M500997200
21.    Virdi GS et al. Protein aggregation and calcium dysregulation are hallmarks of familial Parkinson’s disease in midbrain dopaminergic neurons. npj Parkinson's Disease. 2022; 8(1): 162. doi: https://doi.org/10.1038/s41531-022-00423-7
22.    Angelova PR et al. Ca2+ is a key factor in α-synuclein-induced neurotoxicity. Journal of cell science. 2016; 129(9): 1792-801. doi: 10.1242/jcs.180737
23.    Blesa J et al. Oxidative stress and Parkinson’s disease. Frontiers in neuroanatomy. 2015; 9: 91. doi:  https://doi.org/10.3389/fnana.2015.00091
24.    Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature. 2006; 443(7113): 787-95. doi: https://doi.org/10.1038/nature05292
25.    Sian J et al. Alterations in glutathione levels in Parkinson's disease and other neurodegenerative disorders affecting basal ganglia. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society. 1994; 36(3): 348-55. doi: https://doi.org/10.1002/ana.410360305
26.    Kim GH et al. The role of oxidative stress in neurodegenerative diseases. Experimental neurobiology. 2015; 24(4): 325. doi:  https://doi.org/10.5607/en.2015.24.4.325
27.    Wallace EW et al. Reversible, specific, active aggregates of endogenous proteins assemble upon heat stress. Cell. 2015; 162(6): 1286-98. doi: https://doi.org/10.1016/j.cell.2015.08.041
28.    Dao TP et al. Ubiquitin modulates liquid-liquid phase separation of UBQLN2 via disruption of multivalent interactions. Molecular Cell. 2018; 69(6): 965-78. doi: https://doi.org/10.1016/j.molcel.2018.02.004
29.    Zwirowski S et al. Hsp70 displaces small heat shock proteins from aggregates to initiate protein refolding. The EMBO Journal. 2017; 36(6): 783-96. DOI:  https://doi.org/10.15252/embj.201593378
30.    Liberek K et al. Chaperones in control of protein disaggregation. The EMBO Journal. 2008; Jan 23; 27(2): 328-35. doi: https://doi.org/10.1038/sj.emboj.7601970
31.    Murali Mahadevan H et al. Mitochondria in neuronal health: from energy metabolism to Parkinson's disease. Advanced Biology. 2021; 5(9): 2100663. doi: https://doi.org/10.1002/adbi.202100663
32.    Elfawy HA, Das B. Crosstalk between mitochondrial dysfunction, oxidative stress, and age related neurodegenerative disease: Etiologies and therapeutic strategies. Life Sciences. 2019; 218: 165-84. doi: https://doi.org/10.1016/j.lfs.2018.12.029
33.    Calabrese V et al. Redox homeostasis and cellular stress response in aging and neurodegeneration. Free Radicals and Antioxidant Protocols. 2010; 285-308. doi:10.1007/978-1-60327-029-8_17
34.    Singh A, Zhi L, Zhang H. LRRK2 and mitochondria: recent advances and current views. Brain research. 2019 Jan 1;1702:96-104. doi: https://doi.org/10.1016/j.brainres.2018.06.010
35.    V Nuthan Kumar Babu, Navneet Khurana. A Review on Mitochondrial Dysfunction and Oxidative stress due to Complex-Ⅰ in Parkinson Disease. Research Journal of Pharmacology and Pharmacodynamics. 2021; 13(4): 167-0. doi: 10.52711/2321-5836.2021.00031
36.    Niranjan R. The role of inflammatory and oxidative stress mechanisms in the pathogenesis of Parkinson’s disease: focus on astrocytes. Molecular Neurobiology. 2014; 49: 28-38. doi: https://doi.org/10.1007/s12035-013-8483-x
37.    Dibyajyoti Saha, Ankit Tamrakar. Xenobiotics, Oxidative Stress, Free Radicals Vs. Antioxidants: Dance Of Death to Heaven’s Life. Asian J. Res. Pharm. Sci. 2011; 1(2): 36-38.
38.    Ghanshyam B. Jadhav, Ravindranath B. Saudagar. Free radical Scavenging and Antioxidant Activity of Punica granatum Linn. Asian J. Res. Pharm. Sci. 2014; 4(2): 51-54.
39.    Nirjala Laxmi Madhikarmi, Kora Rudraiah Siddalinga Murthy. Study of oxidative stress and antioxidants status in iron deficient anemic patients. Research J. Science and Tech. 2012; 4(4): 162-167.
40.    A. Julius, K. Renugadevi, V. Hemavathy. Effect of Oxidative Stress in Essential Hypertension. Research J. Pharm. and Tech. 2014; 7(12): 1400-1403.
41.    Dias V et al. The role of oxidative stress in Parkinson's disease. Journal of Parkinson's Disease. 2013; 3(4):461-91. doi: https://doi.org/10.3233/JPD-130230
42.    Hauser DN, Hastings TG. Mitochondrial dysfunction and oxidative stress in Parkinson's disease and monogenic parkinsonism. Neurobiology of Disease. 2013; 51: 35-42. doi: https://doi.org/10.1016/j.nbd.2012.10.011
43.    Minchev D et al. Neuroinflammation and Autophagy in Parkinson’s Disease—Novel Perspectives. International Journal of Molecular Sciences. 2022; 23(23): 14997. doi: https://doi.org/10.3390/ijms232314997
44.    Ghanshyam B. Jadhav, Rahul R. Sable. Gramine and zingerone mitigates neuroinflammation related depressive behaviour induced by chronic unpredictable mild stress in rat. Research Journal of Pharmacy and Technology. 2023; 16(7): 3067-4. doi: 10.52711/0974-360X.2023.00504
45.    Tang Y. Microglial polarization in the pathogenesis and therapeutics of neurodegenerative diseases. Frontiers in Aging Neuroscience. 2018; 10: 154. doi: https://doi.org/10.3389/fnagi.2018.00154
46.    Akhmetzyanova E et al. Different approaches to modulation of microglia phenotypes after spinal cord injury. Frontiers in systems Neuroscience. 2019; 13: 37. doi: https://doi.org/10.3389/fnsys.2019.00037
47.    More SV et al. Cellular and molecular mediators of neuroinflammation in the pathogenesis of Parkinson’s disease. Mediators of Inflammation. 2013; 2013. doi:  https://doi.org/10.1155/2013/952375
48.    Hall S et al. Cerebrospinal fluid concentrations of inflammatory markers in Parkinson’s disease and atypical parkinsonian disorders. Scientific Reports. 2018; 8(1): 13276. doi: https://doi.org/10.1038/s41598-018-31517-z
49.    Liddelow SA et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 2017; 541(7638): 481-7. doi: https://doi.org/10.1038/nature21029
50.    Iuchi K et al.  Cell death via lipid peroxidation and protein aggregation diseases. Biology. 2021; 10(5): 399. doi:  https://doi.org/10.3390/biology10050399
51.    Masaldan S et al. Striking while the iron is hot: Iron metabolism and ferroptosis in neurodegeneration. Free Radical Biology and Medicine. 2019; 133: 221-33. doi: https://doi.org/10.1016/j.freeradbiomed.2018.09.033
52.    H. S. Baul, M. Rajiniraja. Molecular Docking Studies of Selected Flavonoids on Inducible Nitric Oxide Synthase (INOS) in Parkinson’s Disease. Research J. Pharm. and Tech. 2018; 11(8): 3685-3688. doi: 10.5958/0974-360X.2018.00676.5
53.    aJi Y et al. Insight into the potential role of ferroptosis in neurodegenerative diseases. Frontiers in Cellular Neuroscience. 2022; 16: 1005182. doi: https://doi.org/10.3389/fncel.2022.1005182
54.    Sampson TR et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell. 2016; 167(6): 1469-80. doi: https://doi.org/10.1016/j.cell.2016.11.018
55.    Yang X et al. Longitudinal analysis of fecal microbiome and pathologic processes in a rotenone induced mice model of Parkinson’s disease. Frontiers in Aging Neuroscience. 2018; 9: 441. doi: https://doi.org/10.3389/fnagi.2017.00441
56.    Huang Y et al. The role of intestinal dysbiosis in Parkinson’s disease. Frontiers in Cellular and Infection     Microbiology. 2021; 11: 615075. DOI:  https://doi.org/10.3389/fcimb.2021.615075  

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available