Author(s): Andi Akbar, Herlina Rasyid, Hasnah Natsir, Bahrun, Nunuk Hariani Soekamto


DOI: 10.52711/0974-360X.2024.00182   

Address: Andi Akbar1, Herlina Rasyid2, Hasnah Natsir2, Bahrun1, Nunuk Hariani Soekamto2*
1Doctoral Student of Department Chemistry, Faculty of Mathematics and Natural Sciences, Hasanuddin University Jl. Perintis Kemerdekaan KM. 10, Kampus UNHAS Tamalanrea, Makassar – Indonesia.
2Department Chemistry, Faculty of Mathematics and Natural Sciences, Hasanuddin University Jl. Perintis Kemerdekaan KM. 10, Kampus UNHAS Tamalanrea, Makassar- Indonesia.
*Corresponding Author

Published In:   Volume - 17,      Issue - 3,     Year - 2024

Melanin is a color pigment in the skin, if produced in excess will cause browning of the skin. The formation of melanin (melanogenesis) is assisted by tyrosinase through two reactions, namely monophenolase and diphenolase. Melanogenesis can be reduced through the tyrosinase enzyme inhibition mechanism. Seaweed can be used as a tyrosinase inhibitor (brightening agent), such as Padina sp containing secondary metabolites such as alkaloids, flavonoids, terpenoids, phenolics, and saponins. This study aimed to determine the tyrosinase inhibitory activity of Padina sp. The extraction method used was graded maceration with n-hexane (n-Hx), ethyl acetate (Et-OAc), and methanol (Me-OH) solvents, then carried out phytochemical screening, antioxidant test using the DPPH method, and tyrosinase inhibitory test by measuring the enzymatic reaction using L-tyrosine (monophenolase) and L-DOPA (diphenolase). Phytochemical analysis of extracts by GC-MS and in silico analysis by molecular docking were also carried out. The results showed that the total yield of the three extracts was 5.50%. The three extracts had moderate category of antioxidants. The IC50 values monophenolase of n-Hx, Et-OAc, Me-OH extracts, and Kojic acid were 937.68; 132, 92; 268.68; and 20.99µg/mL, respectively. The IC50 values diphenolase of n-Hx, Et-OAc, Me-OH extracts, and Kojic acid were 989.74; 178.33; 356, 87; and 31.76 µg/mL, respectively. The phytochemical of Et-OAc extract based on GC-MS data showed a variety of compounds that have been shown to have pharmacological effects. This data is supported by the results of molecular docking analysis, where compound Spiro(tetrahydrofuryl)2.1'(decalin), 5',5',8'a-trimethyl (1) is able to show a relatively low binding energy, namely -6.86 kcal/mol. The binding energy is even lower than the standard compound (Kojic acid) interaction which only has binding energy of -3.73 kcal/mol. Based on the study carried out, extract from Padina sp has the potential to be developed as a a skin brightening agent.

Cite this article:
Andi Akbar, Herlina Rasyid, Hasnah Natsir, Bahrun, Nunuk Hariani Soekamto. Tyrosinase Inhibitory Activity of n-Hexane, Ethyl Acetate and Methanol Extracts of Padina sp. Research Journal of Pharmacy and Technology. 2024; 17(3):1173-0. doi: 10.52711/0974-360X.2024.00182

Andi Akbar, Herlina Rasyid, Hasnah Natsir, Bahrun, Nunuk Hariani Soekamto. Tyrosinase Inhibitory Activity of n-Hexane, Ethyl Acetate and Methanol Extracts of Padina sp. Research Journal of Pharmacy and Technology. 2024; 17(3):1173-0. doi: 10.52711/0974-360X.2024.00182   Available on:

1.    Maack A, Pegard A. Populus nigra (Salicaceae) absolute rich in phenolic acids, phenylpropanoïds and flavonoids as a new potent tyrosinase inhibitor. Fitoterapia. 2016; 111: 95–101. doi: 10.1016/j.fitote.2016.04.001.
2.    Pereira L. Seaweeds as Source of Bioactive Substances and Skin Care Therapy-Cosmeceuticals, Algotheraphy, and Thalassotherapy. Cosmetics. 2018; 5: 68. doi: 10.3390/cosmetics5040068.
3.    Chang VS, Teo SS. Evaluation of heavy metal, antioxidant and anti-tyrosinase activities of red seaweed (Eucheuma cottonii). Int. Food Res. J., 2016;23:2370–2373.
4.    Chang TS. An Updated Review of Tyrosinase Inhibitors. Int. J. Mol. Sci., 2009;10:2440–2475. doi: 10.3390/ijms10062440.
5.    Shivhare SC, Malviya KG, Malviya KKS, Jain V. A Review: Natural skin lighting and nourishing agents. Research Journal of Topical and Cosmetic Sciences. 2013; 4: 21–25.
6.    Jeong CH, Shim KH. Tyrosinase Inhibitor Isolated from the Leaves of Zanthoxylum piperitum. Biosci. Biotechnol. Biochem. 2004;68:1984–1987. doi: 10.1271/bbb.68.1984.
7.    Almadiy AA, Nenaah GE, Albogami BZ. Bioactivity of Deverra tortuosa essential oil, its nanoemulsion, and phenylpropanoids against the cowpea weevil, a stored grain pest with eco-toxicological evaluations. Environ. Sci. Pollut. Res. 2022. doi: 10.1007/s11356-022-20404-w.
8.    Krakowska-Sieprawska A, Kiełbasa A, Rafińska K, Ligor M, Buszewski B. Modern Methods of Pre-Treatment of Plant Material for the Extraction of Bioactive Compounds. Molecules. 2022; 27: 730. doi: 10.3390/molecules27030730.
9.    Dolorosa MT, Nurjanah N, Purwaningsih S, Anwar E, Hidayat T. Bioactive Compounds of Seaweed Sargassum plagyophyllum and Eucheuma cottonii as Lightening Raw Materials. J. Pengolah. Has. Perikan. Indones. 2017;20:632. doi: 10.17844/jphpi.v20i3.19820.
10.    Ansari AA, Ghanem SM, Naeem M. Brown Alga Padina: A review. Int. J. Bot. Stud. 2019; 4: 1–3.
11.    Subramanian G, Nagaraj A, Gunavathi P, Jamuna S, Banumathi V, Jayanthi V, Manivannan M, Kanaga V, Ravi P. Biochemical Composition of Padina pavonica (L.) a Brown Alga from Mandapam Coastal Regions; Southeast Coast of India. Int. J. Adv. Interdiscip. Res. 2015;  2: 21–24.
12.    El Shoubaky GA, Salem EA. Terpenes and sterols composition of marine brown algae Padina pavonica (Dictyotales) and Hormophysa triquetra (Fucales). Int. J. Pharmacogn. Phytochem. Res. 2014; 6: 894–900.
13.    Manandhar, Wagle, Seong, Paudel, Kim, Jung, Choi. Phlorotannins with Potential Anti-tyrosinase and Antioxidant Activity Isolated from the Marine Seaweed Ecklonia stolonifera. Antioxidants. 2019; 8: 240. doi: 10.3390/antiox8080240.
14.    Kawarkhe PR, Deshmane SV, Biyani KR. Formulation and Evaluation of Antioxidant Face Cream Containing Raspberry Fruit and Grape Seeds Extract. Research Journal of Topical and Cosmetic Sciences. 2016; 7:  73–78.
15.    Harborne AJ. Phytochemical methods a guide to modern techniques of plant analysis. Springer Science & Business Media. 1998.
16.    Brand-Williams W, Cuvelier ME, Berset C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol., 1995; 28: 25–30. doi: 10.1016/S0023-6438(95)80008-5.
17.    Dolorosa MT, Nurjanah, Purwaningsih S, Anwar E, Hidayat T. Tyrosinase inhibitory activity of Sargassum plagyophyllum and Eucheuma cottonii methanol extracts. IOP Conf. Ser. Earth Environ. Sci. 2019; 278: 1. doi: 10.1088/1755-1315/278/1/012020.
18.    Bahrun, Soekamto NH, Firdaus. In Vitro and In Silico Analysis for Antibacterial Activities of Various Extracts of Gracilaria salicornia (Rhodophyta) from Selayar Islands, Indonesia. Egypt. J. Chem. 2021; 64: 7103–7112. doi: 10.21608/EJCHEM.2021.69269.3540.
19.    Heitz MP, Rupp JW. Determining mushroom tyrosinase inhibition by imidazolium ionic liquids: A spectroscopic and molecular docking study. Int. J. Biol. Macromol. 2018; 107: 1971–1981. doi: 10.1016/j.ijbiomac.2017.10.066.
20.    Sudhakar P, Pushkalai SP, Sabarinath C, Priyadharshini S, Haripriya S. Molecular docking and synthesis of 1,2,4-triazin analogue of diclofenac as potential ligand for parkinson’s. Research Journal of Pharmacology and Pharmacodynamics, 2018; 10: 8–12.
21.    Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ. Software News and Updates AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. J Comput Chem. 2009; 30: 2785–2791. doi: 10.1002/jcc.21256.
22.    Jangdey MS, Gupta A, Sah AK, Daharwal SJ. Role of antioxidants in developing novel delivery systems as longevity therapy. Research Journal of Science and Technology. 2014; 6: 119–127.
23.    Arya B, Krishnaveni K,  Sambathkumar R.  Review on Antioxidant Supplements use in Cancer Chemotherapy. Research Journal of Pharmacology and Pharmacodynamics. 2020; 12: 21–24. doi: 10.5958/2321-5836.2020.00005.1
24.    Muthukumaran P, Shanmuganathan P, Malathi C. In Vitro Antioxidant Evaluation of Mimosa pudica. Asian Journal of Pharmaceutical Research. 2011; 2: 44–46.
25.    Vaishali M. Antioxidants in Health and Diseases. Research Journal of Pharmacy and Technology. 2014; 7: 489–493.
26.    Suganthi SJ, Devi PU, Kanmani SS. Free Radical Scavenging Potential and HPTLC profile of Mimosa pudica. Research Journal of Pharmacy and Technology. 2011; 4: 1090–1094.
27.    Elias J, Rajesh MG, Anish NP, Sunny S, Jayan N. Free Radical Scavenging Activity and Phytochemical Profiling of Acalypha indica Linn. Research Journal of Pharmacy and Technology. 2010; 3: 1231–1234.
28.    Junopia AC, Natsir H, Dali S. Effectiveness of Brown Algae (Padina australis) Extract as Antioxidant Agent. J. Phys. Conf. Ser. 2020;1463:1–6. doi: 10.1088/1742-6596/1463/1/012012.
29.    Jose BE., Panneerselvam DP. Identification of Phytochemical Constituents within the Leaf Extracts of Azima tetracantha Lam using Gas Chromatography-Mass Spectrometry. Research Journal of Pharmacology and Pharmacodynamics. 2019; 11: 17–22.
30.    Huyut Z, Beydemir Ş, Gülçin İ. Antioxidant and Antiradical Properties of Selected Flavonoids and Phenolic Compounds. Biochem. Res. Int. 2017; 1–10. doi: 10.1155/2017/7616791.
31.    Rao KVB, Munjal M, Patnayak A, Karthik L, Kumar G. Phytochemical Composition, Antioxidant, Antimicrobial and Cytotoxic Potential of Methanolic Extracts of Adhatoda vasica (Acanthaceae). Research Journal of Pharmacy and Technology. 2013;6:1004–1009.
32.    Akbar A, Soekamto NH, Firdaus, Bahrun. Antioxidant of n-hexane, ethyl acetate and methanol extracts of Padina sp with DPPH method. IOP Conference Series: Earth and Environmental Science. 2021; 800: 12019.
33.    Kilica M, Orhana IE, Erenb G, Okudanc ES, Estepd AS, Benceld JJ, Tabanca N. Insecticidal activity of forty-seven marine algae species from the Mediterranean, Aegean, and Sea of Marmara in connection with their cholinesterase and tyrosinase inhibitory activity. South African Journal of Botany. 2021.
34.    Choosuwan P, Praiboon J, Boonpisuttinant K, Klomjit A, Muangmai N, Ruangchuay R, Chirapart A. Inhibitory Effects of Caulerpa racemosa, Ulva intestinalis, and Lobophora challengeriae on Tyrosinase Activity and -MSH-Induced Melanogenesis in B16F10 Melanoma Cells. Life. 2023; 934(13): 1-16.
35.    Chi HK, Ha TTH, Hung TN, Hang TTN, Tham TTH, Huong LM, Cuong LH, Chi HK, Ha TTH, Hung TN, Hang TTN, Tham TTH, Huong LM, Cuong LH. Screening of algae collected from Nha Trang bay, Vietnam, for potential cosmeceutical bioproducts. Vietnam Journal of Marine Science and Technology. 2022; 22(4): 415–422.
36.    Cha SH, Ko SC, Kim D, Jeon YJ. Screening of marine algae for potential tyrosinase inhibitor: Those inhibitors reduced tyrosinase activity and melanin synthesis in zebrafish. Journal of Dermatology. 2011; 38: 354–363.
37.    Namjooyan F, Farasat M, Alishahi M, Jahangiri A, Mousavi H. The Anti-melanogenesis Activities of Some Selected Brown Macroalgae from Northern Coasts of the Persian Gulf. Brazilian Archives of Biology and Technology. 2019; 62: 1-12.
38.    Jayawardena TU, Sanjeewa KKA, Kim HS, Lee HG, Wang L, Lee DS, Jeon YJ. Padina boryana, a brown alga from the Maldives: inhibition of α-MSH-stimulated melanogenesis via the activation of ERK in B16F10 cells. Fisheries and Aquatic. 2020; 23(8): 1-9. doi:
39.    Ramsden CA, Riley PA. Tyrosinase: the four oxidation states of the active site and their relevance to enzymatic activation, oxidation and inactivation. Bioorganic & Medicinal Chemistry. 2014; 22(8): 2388-2395.
40.    Obaid RJ, Mughal EU, Naeem N, Sadiq A, Alsantali RI, Jassas RS, Moussa Z, Ahmed SA. Natural and synthetic flavonoid derivatives as new potential tyrosinase inhibitors: A systematic review. Royal Society of Chemistry. 2021; 11: 22159–22198.
41.    Bahrun, Okino T, Rasyid H, Soekamto Nh. Biological evaluation and molecular docking of Indonesian Gracilaria salicornia as antioxidant agents. Journal of Research in Pharmachy. 2023; 27(1): 207-220.
42.    Sokmen BB, Hasdemir B, Yusufoglu A, Yanardag R. Some Monohydroxy Tetradecanoic Acid Isomers as Novel Urease and Elastase Inhibitors and as New Antioxidants. Appl. Biochem. Biotechnol. 2014; 172: 1358–1364. doi: 10.1007/s12010-013-0595-2.
43.    Bhardwaj M, Sali VK, Mani S, Vasanthi HR. Neophytadiene from Turbinaria ornata Suppresses LPS-Induced Inflammatory Response in RAW 264.7 Macrophages and Sprague Dawley Rats. Inflammation. 2020; 43: 937–950. doi: 10.1007/s10753-020-01179-z.
44.    Gunes A, Gokhan Z, Ramazan C, Mahomoodally FM, Sharmeen J, Adriano M, Azzurra S.Chemical composition and biological activities of essential oils from Calendula officinalis L. flowers and leaves. Flavour Fragr. J. 2021; 36: 554–563. doi: 10.1002/ffj.3661.
45.    Breeta RDIE, Grace VMB, Wilson DD. Methyl Palmitate-A suitable adjuvant for Sorafenib therapy to reduce in vivo toxicity and to enhance anti‐cancer effects on hepatocellular carcinoma cells. Basic Clin. Pharmacol. Toxicol. 2021; 128: 366–378. doi: 10.1111/bcpt.13525.
46.    Panda P, Dash P, Ghosh G. Chemometric profile, antioxidant and tyrosinase inhibitory activity of Camel’s foot creeper leaves (Bauhinia vahlii). Nat. Prod. Res. 2018;32:596–599. doi: 10.1080/14786419.2017.1326487.
47.    Skanda S, Vijayakumar BS. Antioxidant and Anti-inflammatory Metabolites of a Soil-Derived Fungus Aspergillus arcoverdensis SSSIHL-01. Curr. Microbiol. 2021; 78: 1317–1323. doi: 10.1007/s00284-021-02401-3.
48.    Saruno R, Kato F, Ikeno T. Kojic acid, a tyrosinase inhibitor from Aspergillus albus. Agric. Biol. Chem. 1979;43:1337–1338. doi: 10.1271/bbb1961.43.1337.
49.    Gou L, Lü ZR, Park D, Oh SH, Shi L, Park SJ, Bhak J, Park, YD, Ren ZL, Zou F. The Effect of Histidine Residue Modification on Tyrosinase Activity and Conformation: Inhibition Kinetics and Computational Prediction. Journal of Biomolecular Structure and Dynamics. 2008; 26(3): 395-401. doi:
50.    Dhorajiwala TM, Halder ST, Samant L. Comparative in silico molecular docking analysis of l-threonine-3-dehydrogenase, a protein target against African trypanosomiasis using selected phytochemicals. J. Appl. Biotechnol. Reports. 2019; 6: 101–108. doi: 10.29252/JABR.06.03.04.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

56th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Recent Articles


Not Available