Author(s): Sasikala G, Praveena R, Meeradevi A


DOI: 10.52711/0974-360X.2024.00183   

Address: Sasikala G1, Praveena R2*, Meeradevi A3
1Associate Professor, Government Kilpauk Medical College, Chennai.
2Department of Pharmacology, Saveetha Medical College, Chennai, Tamil Nadu, India.
3Associate Professor, Institute of Pharmacology, Madras Medical College, Chennai.
*Corresponding Author

Published In:   Volume - 17,      Issue - 3,     Year - 2024

Anxiety disorder is one of the most commonly occurring mental health conditions with less visibility leading to profound disability. Zinc, one of the most ubiquitous trace elements, has been identified to interact with the glutamate and GABAA receptors. This study was conducted to assess the anxiolytic activity of zinc acetate using a various behavioural model. Swiss albino mice were used in this study. The mice were randomised into 5 groups and were treated with control- normal saline, Diazepam as a standard drug, zinc acetate (10 and 20mg/kg) and zinc acetate 10mg/kg + Diazepam. Their anxiety like behaviour was assessed using elevated plus maze. In the elevated plus maze, zinc acetate at 20mg/kg and zinc acetate 10mg/kg + Diazepam showed increased amount of time spent in the open arm and also the number of entries into the open arm. Statistical analysis was performed using unpaired t- test. In conclusion, zinc acetate decreases anxiety like behaviour in mice and also potentiates the action of Diazepam.

Cite this article:
Sasikala G, Praveena R, Meeradevi A. Evaluation of Zinc acetate in decreasing anxiety like behavior in Swiss Albino Mice using behavior model. Research Journal of Pharmacy and Technology. 2024; 17(3):1181-4. doi: 10.52711/0974-360X.2024.00183

Sasikala G, Praveena R, Meeradevi A. Evaluation of Zinc acetate in decreasing anxiety like behavior in Swiss Albino Mice using behavior model. Research Journal of Pharmacy and Technology. 2024; 17(3):1181-4. doi: 10.52711/0974-360X.2024.00183   Available on:

1.    GBD Results. Institute for Health Metrics and Evaluation. (accessed 2023-01-21).
2.    Hendriks, S. M.; Spijker, J.; Licht, C. M. M.; Hardeveld, F., de Graaf, R., Batelaan, N. M., Penninx, B. W. J. H., Beekman, A. T. F. Long-Term Disability in Anxiety Disorders. BMC Psychiatry. 2016; 16: 248.
3.    Trivedi, J.; Gupta, P. An Overview of Indian Research in Anxiety Disorders. Indian J. Psychiatry. 2010; 52: S210-8.
4.    Bystritsky, A. Treatment-Resistant Anxiety Disorders. Mol. Psychiatry. 2006; 11(9): 805–814.
5.    Mahadik, P. S.; G.p, S.; Powar, A. S.; D, D.; T, T. M.; Gavali, S. A. Chemical and Biological Properties of Benzodiazepines- An Overview. Res. J. Pharm. Technol. 2012; 5 (2): 181–189.
6.    Melaragno, A. J. Pharmacotherapy for Anxiety Disorders: From First-Line Options to Treatment Resistance. FOCUS. 2021; 19(2): 145–160.
7.    Nuss, P. Anxiety Disorders and GABA Neurotransmission: A Disturbance of Modulation. Neuropsychiatr. Dis. Treat. 2015; 11: 165–175.
8.    J, S.; T, T.; P, A.; K, R.; E, B. Role of Caffeine Intake in Lithium Treated Methylphenidate Induced Oxidative Stress in an Animal Model of Mania. Asian J. Pharm. Res. 2013; 3(4): 166–171.
9.    Maret, W. Zinc Biochemistry: From a Single Zinc Enzyme to a Key Element of Life12. Adv. Nutr. 2013; 4(1): 82–91.
10.    Gower-Winter, S. D.; Levenson, C. W. Zinc in the Central Nervous System: From Molecules to Behavior. Bio Factors Oxf. Engl. 2012; 38(3): 186.
11.    Andreini, C.; Bertini, I.; Cavallaro, G. Minimal Functional Sites Allow a Classification of Zinc Sites in Proteins. PLOS One. 2011; 6(10): e26325.
12.    Peralta, F. A.; Huidobro-Toro, J. P. Zinc as Allosteric Ion Channel Modulator: Ionotropic Receptors as Metalloproteins. Int. J. Mol. Sci. 2016; 17(7): 1059.
13.    Sahadewa, S.; Sargowo, D.; Widodo, M. A.; Kusuma, H. C. The Role of Zinc Supplementation on the Level of MDA and the Number of Mycobacterium Tuberculosis Colonies in Male Tuberculosis Wistar Rats. Res. J. Pharm. Technol. 2020; 13(7): 3409–3413.
14.    Younis, H. Y.; Thanoon, I. A.; Fadhil, N. N.; Merkhan, M. M. Effect of Zinc as an Add-On to Metformin Therapy on Glycemic Control, Serum Insulin, and C-Peptide Levels and Insulin Resistance in Type 2 Diabetes Mellitus Patient. Res. J. Pharm. Technol. 2022; 15(3): 1184–1188.
15.    P, J. P.; K, P.; J, S.; M, L.; K, S. Screening Models for CNS Stimulant Drugs: A Review. Asian J. Pharm. Res.2013, 3 (3), 151–155.
16.    Jadhav, C. A.; Jadhav, R. S.; Vikhe, S. R. Phytochemical Study and Anxiolytic Activity of Hibiscus Cannabinus Leaves. Res. J. Pharmacogn. Phytochem.2022, 14 (4), 265–271.
17.    Fernandes, Z.; Khandige, P. S.; D’Souza, U. P. Anxiolytic Potential of Perseaamericana M. by Elevated plus Maze Test. Res. J. Pharm. Technol. 2020; 13(7): 3326–3328.
18.    Vuyyala, B.; Kumar, D. S.; Lakshmi, T. Evaluation of Anxiolytic Potential of Various Extracts of Caesalpinia Pulcherrima Leaves. Res. J. Pharm. Technol. 2021; 14(11): 5625–5628.
19.    Ranjbar, E.; Kasaei, M. S.; Mohammad-Shirazi, M.; Nasrollahzadeh, J.; Rashidkhani, B.; Shams, J.; Mostafavi, S.A.; Mohammadi, M. R. Effects of Zinc Supplementation in Patients with Major Depression: A Randomized Clinical Trial. Iran. J. Psychiatry. 2013;  8(2): 73–79.
20.    Dong, J.; Robertson, J. D.; Markesbery, W. R.; Lovell, M. A. Serum Zinc in the Progression of Alzheimer’s Disease. J. Alzheimers Dis. JAD. 2008; 15(3): 443–450.
21.    Petrilli, M. A.; Kranz, T. M.; Kleinhaus, K.; Joe, P.; Getz, M.; Johnson, P.; Chao, M. V.; Malaspina, D. The Emerging Role for Zinc in Depression and Psychosis. Front. Pharmacol. 2017; 8.
22.    Walf, A. A.; Frye, C. A. The Use of the Elevated plus Maze as an Assay of Anxiety-Related Behavior in Rodents. Nat. Protoc. 2007; 2(2): 322–328.
23.    Jaiswal, A. K. Neurobehavioural Effects of Prenatal Sodium Valproate Exposure in Rat Offspring. Res. J. Pharmacol. Pharmacodyn. 2016; 8(3): 127–133.
24.    D’Souza, U. P.; Joshi, H.; Alsheena, N. Anti-Anxiety Effect of AervaLanata (L.) Using Mice Model. Res. J. Pharm. Technol. 2020; 13(2): 565–568.
25.    Hagmeyer, S.; Haderspeck, J. C.; Grabrucker, A. M. Behavioral Impairments in Animal Models for Zinc Deficiency. Front. Behav. Neurosci. 2014; 8.
26.    Russo, A. J. Decreased Zinc and Increased Copper in Individuals with Anxiety. Nutr. Metab. Insights. 2011; 4: 1–5.
27.    Masood, A.; Nadeem, A.; Mustafa, S. J.; O’Donnell, J. M. Reversal of Oxidative Stress-Induced Anxiety by Inhibition of Phosphodiesterase-2 in Mice. J. Pharmacol. Exp. Ther. 2008; 326(2): 369–379.
28.    Joshi, M.; Akhtar, M.; Najmi, A. K.; Khuroo, A. H.; Goswami, D. Effect of Zinc in Animal Models of Anxiety, Depression and Psychosis. Hum. Exp. Toxicol. 2012; 31(12): 1237–1243.
29.    Samardzić, J.; Savić, K.; Stefanović, N.; Matunović, R.; Baltezarević, D.; Obradović, M.; Jancić, J.; Oprić, D.; Obradović, D. Anxiolytic and Antidepressant Effect of Zinc on Rats and Its Impact on General Behavioural Parameters. Vojnosanit. Pregl. 2013; 70(4): 391–395.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

56th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Recent Articles


Not Available