Author(s): Fathul Djannah, Anny Setijo Rahaju, Hamsu Kadriyan, Eva Triani, Heru Fajar Trianto, Rahadian Zainul

Email(s): anny_sr@fk.unair.ac.id

DOI: 10.52711/0974-360X.2024.00201   

Address: Fathul Djannah1, Anny Setijo Rahaju2, Hamsu Kadriyan3, Eva Triani4, Heru Fajar Trianto5, Rahadian Zainul6
1Department of Anatomical Pathology, Faculty of Medicine, Universitas Mataram, Mataram, West Nusa Tenggara, Indonesia.
2Department of Anatomical Pathology, Faculty of Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia.
3Department of Ear Nose and Throat (ENT), Faculty of Medicine, Universitas Mataram, Mataram, West Nusa Tenggara, Indonesia.
4Department of Public Health, Faculty of Medicine, Universitas Mataram, Mataram, West Nusa Tenggara, Indonesia Pathology.
5Departement, Faculty of Medicine, Tanjungpura University, Pontianak, West Kalimatan, Indonesia.
6Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Padang, Padang, Indonesia Center for Advanced Material Processing, Artificial Intelligence.
*Corresponding Author

Published In:   Volume - 17,      Issue - 3,     Year - 2024


ABSTRACT:
Black garlic is made from fresh garlic by thermal processing. It is produced under certain temperatures and humidity to generate a product with greater content, taste, and texture. Additionally, black garlic has many benefits, such as being an antioxidant, antibacterial, anti-inflammatory, antihypertensive, anticancer, antidiabetic, and cardiovascular protective. Thus, black garlic can be utilized as a treatment for tuberculosis and diabetes mellitus. Moreover, the ingredients in black garlic, such as SAC, polyphenols, flavonoids, tannins, and ajoene, can reduce levels of Mycobacterium TB, lessen plasma glucose levels, and increase plasma insulin in diabetes mellitus.


Cite this article:
Fathul Djannah, Anny Setijo Rahaju, Hamsu Kadriyan, Eva Triani, Heru Fajar Trianto, Rahadian Zainul. Black Garlic for the treatment of Tuberculosis and Diabetes mellitus. Research Journal of Pharmacy and Technology. 2024; 17(3):1282-8. doi: 10.52711/0974-360X.2024.00201

Cite(Electronic):
Fathul Djannah, Anny Setijo Rahaju, Hamsu Kadriyan, Eva Triani, Heru Fajar Trianto, Rahadian Zainul. Black Garlic for the treatment of Tuberculosis and Diabetes mellitus. Research Journal of Pharmacy and Technology. 2024; 17(3):1282-8. doi: 10.52711/0974-360X.2024.00201   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2024-17-3-52


REFERENCES:
1.    Shinde A, Dond S, Diwate V, Pawar S, Katkar R, Darandale S. Historical Approach Of Garlic (Allium Sativum) In Food, Spices And It’s Phytochemicals And Therapeutic Uses In Medicine: A Review. 2020.
2.    Ryu JH, Kang D. Physicochemical Properties, Biological Activity, Health Benefits, and General Limitations of Aged Black Garlic: A Review. Molecules (Basel, Switzerland). 2017; 22(6): 919. doi: 10.3390/molecules22060919.
3.    Zhang X, Li N, Lu X, Liu P, Qiao X. Effects of temperature on the quality of black garlic. Journal of the Science of Food and Agriculture. 2016; 96(7): 2366-72. doi: 10.1002/jsfa.7351.
4.    Bedrníček J, Laknerová I, Lorenc F, MoraesPPd, Jarošová M, Samková E, et al. The use of a thermal process to produce black garlic: Differences in the physicochemical and sensory characteristics using seven varieties of fresh garlic. Foods (Basel, Switzerland). 2021;10(11):2703. doi: 10.3390/foods10112703.
5.    Ahmed T, Wang CK. Black Garlic and Its Bioactive Compounds on Human Health Diseases: A Review. Molecules (Basel, Switzerland). 2021; 26(16). doi: 10.3390/molecules26165028.
6.    Lia Agustina, Emilia Gan, NinisYuliati, Giftania W. Sudjarwo. In vitro Antiplatelet Activities of Aqueous Extract of Garlic (Allium sativum) and black Garlic in Human Blood. Research Journal of Pharmacy and Technology. 2022; 15(4): 1579-2. doi: 10.52711/0974-360X.2022.00263.
7.    Shang A, Cao S-Y, Xu X-Y, Gan R-Y, Tang G-Y, Corke H, et al. Bioactive compounds and biological functions of garlic (Allium sativum L.). Foods (Basel, Switzerland). 2019; 8(7): 246. doi: 10.3390/foods8070246.
8.    Jing H. Black garlic: Processing, composition change, and bioactivity. eFood. 2020; 1(3): 242-6. doi: 10.2991/efood.k.200617.001.
9.    Djannah F, Massi MN, Hatta M, Bukhari A, Handayani I, Faruk M, et al. Virgin coconut oil and tuberculosis: A mini-review. Pharmacognosy Journal. 2022; 14(2): 464-469. doi:10.5530/pj.2022.14.59.
10.    Alit Kumar, Rajan, Vivek Sharma. Tuberculosis: A Brief Overview. Asian J. Pharm. Res. 2012; 2(2): 59-62.
11.    Kusumawati RL, Tania T, McNeil E, Chongsuvivatwong V. Predictors of multidrug resistance among pulmonary tuberculosis patients in a tertiary hospital in North Sumatera, Indonesia. Bali Med J. 2018; 7(1): 68-73.
12.    Natarajan A, Beena PM, Devnikar AV, Mali S. A systemic review on tuberculosis. The Indian journal of tuberculosis. 2020; 67(3): 295-311. doi: 10.1016/j.ijtb.2020.02.005. Epub 2020 Feb 28.
13.    Monesh O. Patil, Yogesh S. Mali, Paresh A. Patil, D. R. Karnavat. Development of Immunotherapeutic Nanoparticles for treatment of Tuberculosis. Asian J. Pharm. Res. 2020; 10(3): 226-232. doi: 10.5958/2231-5691.2020.00039.8.
14.    Sourabh D Jain, Arun Kumar Gupta. Chemistry of Fluoroquinones in The Management of Tuberculosis (TB): An Overview. Asian J. Pharm. Res. 2021; 11(1): 55-59. doi: 10.5958/2231-5691.2021.00011.3.
15.    Dewi DNSS, Soedarsono S, Kurniati A, Mertaniasih NM. The specifc DNA region of esxA gene for the target of PCR to determine Mycobacterium tuberculosis accurately. Bali Med J. 2017; 6(1): 150-5.
16.    Dwija IBP, Anggraeni M, Ariantari NP. Anti Tuberculosis Activity of Forest Kedondong (Spondias pinnata) Stembark Extract Against Multiple Drug Resistance (MDR) Strain of Mycobacterium Tuberculosis. Bali Med J. 2016; 5(1): 23-6.
17.    Yudistira A. Effect of mesenchymal stem cells on Mycobacterium tuberculosis growth: in vitro study. Bali Med J. 2018;7(3).
18.    Paweninggalih RE, Mertaniasih NM, Koendhori EB, Soedarsono S. Time to detection of Mycobacterium tuberculosis using culture filtrate H37rv supplementation on MGIT 960 System. Bali Med J. 2023; 12(1): 228-34.
19.    Nair SS, Gaikwad SS, Kulkarni SP, Mukne AP. Allium sativum Constituents Exhibit Anti-tubercular Activity In vitro and in RAW 264.7 Mouse Macrophage Cells Infected with Mycobacterium tuberculosis H37Rv. Pharmacognosy magazine. 2017; 13(Suppl 2): S209-s15. doi: 10.4103/pm.pm_435_16. Epub 2017 Jul 11.
20.    Veronica E, Dampati PS, Bhargah V, Chrismayanti NKSD. PotensiEkstrakBawangHitamSebagaiAntituberkularMycobacterium Tuberculosis. Gema Kesehatan. 2021; 13(1): 9-18. doi: https://doi.org/10.47539/gk.v13i1.163.
21.    Mohammed Musa Saaduddin, Sultana. G, Dhanalakshmi. Utilization of Bedaquiline among Drug Resistant-Tuberculosis patients. Asian Journal of Pharmaceutical Research. 2022; 12(2): 132-6. doi: 10.52711/2231-5691.2022.00020.
22.    Choi J-A, Cho S-N, Lim Y-J, Lee J, Go D, Kim S-H, et al. Enhancement of the antimycobacterial activity of macrophages by ajoene. Innate Immunity. 2018; 24(1): 79-88. doi: 10.1177/1753425917747975.
23.    Satheesh Kumar. G, Noorjahan, G. Sadhana Reddy, Syed Khundmeer Mujahid, T. Ashwini, V. Mahender Chary. Extraction, Phytochemical Studies and In–Vitro Screening of the Leaves and Flowers of Crossandrainfundibuliformis against Mycobacterium tuberculosis. Asian J. Res. Pharm. Sci. 2018; 8(4): 247-252. doi: 10.5958/2231-5659.2018.00041.
24.    Tesfaye A. Revealing the Therapeutic Uses of Garlic (Allium sativum) and Its Potential for Drug Discovery. The Scientific World Journal. 2021; 2021: 8817288. doi: 10.1155/2021/8817288.
25.    Garcia S. Pandemics and Traditional Plant-Based Remedies. A Historical- Botanical Review in the Era of COVID19. Frontiers in plant science. 2020; 11: 571042. doi: https://doi.org/10.3389/fpls.2020.571042.
26.    Rajani SD, Desai PB, Rajani DP. Antimycobacterial activity of garlic (Allium sativum) against multi-drug resistant and reference strain of Mycobacterium tuberculosis. Int J Appl Res. 2015; 1(13): 767-70.
27.    Hannan A, Ikram Ullah M, Usman M, Hussain S, Absar M, Javed K. Anti-mycobacterial activity of garlic (Allium sativum) against multi-drug resistant and non-multi-drug resistant mycobacterium tuberculosis. Pakistan Journal of Pharmaceutical Sciences. 2011; 24(1): 81-5.
28.    Lindawati NY, Hartono H. Optimasi Kapsul Bawang Putih (Allium sativum Linn) sebagai Terapi Alternatif Pengobatan TBC. Jurnal Farmasi (Journal of Pharmacy). 2013; 2(1): 19. doi: 10.37013/jf.v2i1.16.
29.    Dwivedi VP, Bhattacharya D, Singh M, Bhaskar A, Kumar S, Fatima S, et al. Allicin enhances antimicrobial activity of macrophages during Mycobacterium tuberculosis infection. Journal of Ethnopharmacology. 2019; 243: 111634. doi: 10.1016/j.jep.2018.12.008.
30.    Shukla P, Sharma A. Effect of some medicinal plants on growth of Mycobacterium tuberculosis, multi drug resistant Mycobacterium tuberculosis and mycobacterium other than tuberculosis. Journal of Microbiology, Biotechnology and Food Sciences. 2021; 2021:199-201.
31.    Fazeli-Nasab B, Valizadeh M, Beigomi M, Saeidi S. Identification of Antibiotic-Resistant Genes and Effect of Garlic Ethanolic Extract on Mycobacterium tuberculosis Isolated from Patients in Zabol, Iran. Gene, Cell and Tissue. 2021; 8(4). doi: 10.5812/gct.113202.
32.    Bae SE, Cho SY, Won YD, Lee SH, Park HJ. Changes in S-allyl cysteine contents and physicochemical properties of black garlic during heat treatment. LWT-Food Science and Technology. 2014; 55(1): 397-402. doi: 10.1016/j.lwt.2013.05.006.
33.    Botas J, Fernandes Â, Barros L, Alves MJ, Carvalho AM, Ferreira IC. A comparative study of black and white Allium sativum L.: nutritional composition and bioactive properties. Molecules (Basel, Switzerland). 2019; 24(11): 2194. doi: 10.3390/molecules24112194.
34.    Toledano Medina MÁ, Merinas-Amo T, Fernández-Bedmar Z, Font R, del Río-Celestino M, Pérez-Aparicio J, et al. Physicochemical characterization and biological activities of black and white garlic: In vivo and in vitro assays. Foods (Basel, Switzerland). 2019; 8(6): 220. doi: 10.3390/foods8060220.
35.    Hasan N, Siddiqui MU, Toossi Z, Khan S, Iqbal J, Islam N. Allicin-induced suppression of Mycobacterium tuberculosis 85B mRNA in human monocytes. Biochemical and Biophysical Research Communications. 2007; 355(2): 471-6. doi: 10.1016/j.bbrc.2007.01.174.
36.    Vaishali. R. Undale, Sujata S. Kurkute, Srutuja S. Jadhav. Curcumin Potentiates Therapeutic Efficacy of Metformin: A Preclinical Study in STZ-NA Induced Hyperglycemia in Wistar Rats. Research J. Pharm. and Tech. 2020; 13(6): 2591-2596. doi: 10.5958/0974-360X.2020.00461.8.
37.    Husen SA, Wahyuningsih SPA, Ansori ANM, Hayaza S, Susilo RJK, Winarni D, Punnapayak H, Darmanto W. Antioxidant Potency of Okra (Abelmoschus esculentus Moench) Pods Extract on SOD Level and Tissue Glucose Tolerance in Diabetic Mice. Res J Pharm Technol. 2019; 12(12): 5683. doi: 10.5958/0974-360X.2019.00983.1.
38.    Husen SA, Setyawan MF, Syadzha MF, Susilo RJK, Hayaza S, Ansori ANM, Alamsjah MA, Ilmi ZN, Wulandari PAC, Pudjiastuti P, Awang P, Winarni D. A Novel Therapeutic effects of Sargassum ilicifolium Alginate and Okra (Abelmoschus esculentus) Pods extracts on Open wound healing process in Diabetic Mice. Research J. Pharm. and Tech. 2020; 13(6): 2764-2770. doi: 10.5958/0974-360X.2020.00491.6.
39.    Prawitasari DS. Diabetes melitus dan antioksidan. KELUWIH: Jurnal Kesehatan dan Kedokteran. 2019; 1(1): 48-52. doi: https://doi.org/10.24123/kesdok.V1i1.2496.
40.    Sakran N, Graham Y, Pintar T, Yang W, Kassir R, Willigendael EM, et al. The many faces of diabetes. Is there a need for re-classification? A narrative review. BMC endocrine disorders. 2022; 22(1): 1-12.
41.    Husen SA, Ansori ANM, Hayaza S, Susilo RJK, Zuraidah AA, Winarni D, Punnapayak H, Darmanto W. Therapeutic Effect of Okra (Abelmoschus esculentus Moench) Pods Extract on Streptozotocin-Induced Type-2 Diabetic Mice. Res J Pharm Technol. 2019; 12(8): 3703-3708. doi: 10.5958/0974-360X.2019.00633.4.
42.    Idi Pangestu TY, Setyawan AB. Pengaruh Pemberian Black Garlic terhadap Perubahan Kadar Gula Darah pada Pasien Diabetes Mellitus Tipe II di Wilayah Kerja PUSKESMAS Segiri Samarinda. Borneo Student Research (BSR). 2020; 1(3): 2229-34.
43.    Kim DG, Kang MJ, Hong SS, Choi YH, Shin JH. Anti-inflammatory Effects of Functionally Active Compounds Isolated from Aged Black Garlic. Phytotherapy research : PTR. 2017; 31(1): 53-61. doi: 10.1002/ptr.5726.
44.    Saryono, Nani D, Proverawati A, Sarmoko. Immunomodulatory effects of black solo garlic (Allium sativum L.) on streptozotocin-induced diabetes in Wistar rats. Heliyon. 2021; 7(12). doi: https://doi.org/10.1016/j.heliyon.2021.e08493.
45.    Lee Y-M, Gweon O-C, Seo Y-J, Im J, Kang M-J, Kim M-J, et al. Antioxidant effect of garlic and aged black garlic in animal model of type 2 diabetes mellitus. Nutrition Research and Practice. 2009; 3(2): 156-61. doi: 10.4162/nrp.2009.3.2.156.
46.    Isnaini F, Yudistia R, Faradilla A, Rahman M. Effect of Black Garlic Extract on Blood Glucose, Lipid Profile, and SGPT-SGOT of Wistar Rats Diabetes Mellitus Model. Majalah Kedokteran Bandung. 2019; 51(2): 82-7. doi: https://doi.org/10.15395/mkb.v51n2.1657.
47.    Ha AW, Kim WK. Antioxidant mechanism of black garlic extract involving nuclear factor erythroid 2-like factor 2 pathway. Nutr Res Pract. 2017; 11(3): 206-13. doi: 10.4162/nrp.2017.11.3.206. Epub 2017 Apr 6. Erratum in: Nutr Res Pract. 2017 Aug;11(4):347.
48.    Saravanan G, Ponmurugan P. Antidiabetic effect of S-allylcysteine: effect on thyroid hormone and circulatory antioxidant system in experimental diabetic rats. Journal of Diabetes and its Complications. 2012; 26(4): 280-5. doi: 10.1016/j.jdiacomp.2012.03.024.
49.    Kim JH, Yu SH, Cho YJ, Pan JH, Cho HT, Kim JH, et al. Preparation of S-allylcysteine-enriched black garlic juice and its antidiabetic effects in streptozotocin-induced insulin-deficient mice. Journal of Agricultural and Food Chemistry. 2017; 65(2): 358-63. doi: 10.1021/acs.jafc.6b04948.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available