Author(s): Hebert Adrianto, Etha Rambung, Hanna Tabita Hasianna Silitonga


DOI: 10.52711/0974-360X.2024.00212   

Address: Hebert Adrianto, Etha Rambung, Hanna Tabita Hasianna Silitonga
School of Medicine, Universitas Ciputra, Citra Land CBD Boulevard, Kel. Made RT 04 RW 01, Kecamatan Sambikerep Surabaya 60219, East Java, Indonesia.
*Corresponding Author

Published In:   Volume - 17,      Issue - 3,     Year - 2024

Various countries have reported the resistance of mosquitoes to synthetic insecticides and larvicides. Scientists take advantage of secondary metabolites from plants and develop them into natural larvicides. Kaffir lime leaves (Citrus hystrix) as a cooking spice is of concern in this study. The main aim of this study was to identify differences in midgut histopathological changes in Ae. aegypti larvae after exposure to C. hystrix leaf extract. This research is experimental research in the laboratory. There are five treatments with three replications. Then, 20 third-instar Ae. aegypti larvae were placed into each plastic container and recorded for 24 hours. Histopathological slices of the larval midgut were produced and stained with hematoxylin and eosin (HE). A light microscope was used to identify it. Data on changes in midgut larvae were analyzed using SPSS. Mortality of the larvae was shown in C. hystrix extract groups at doses of 1,500 and 3,500 ppm. Midgut changes occur in the length of the midgut lumen, the length of the epithelium, and the loss of the epithelial cell nucleus. The cell nuclei were not visible in the extract group at a dose of 3,500 ppm. The statistical test showed that there are differences in midgut histopathological changes in Ae. aegypti larvae after exposure to C. hystrix leaf extract. We need an in-depth study of the potency of the extract C. hystrix as an alternative larvicide against Ae. aegypti for the future.

Cite this article:
Hebert Adrianto, Etha Rambung, Hanna Tabita Hasianna Silitonga. Histopathology of the Midgut (Longitudinal section) of Aedes aegypti larvae after exposure to kaffir lime leaf extract from Bali, Indonesia. Research Journal of Pharmacy and Technology. 2024; 17(3):1346-1. doi: 10.52711/0974-360X.2024.00212

Hebert Adrianto, Etha Rambung, Hanna Tabita Hasianna Silitonga. Histopathology of the Midgut (Longitudinal section) of Aedes aegypti larvae after exposure to kaffir lime leaf extract from Bali, Indonesia. Research Journal of Pharmacy and Technology. 2024; 17(3):1346-1. doi: 10.52711/0974-360X.2024.00212   Available on:

1.    Bimal MK, Kaur L, Kaur M. Assessment of knowledge and practices of people regarding dengue fever. Int J Nurs Educ Res. 2016; 4(2): 174-178. doi: 10.5958/2454-2660.2016.00035.1.
2.    Kavitha V, Malarvizhi N, Salomy RM, et al. A study to assess the knowledge, attitude and preventive practices of dengue fever among the people of selected urban slums, Coimbatore. Int J Nurs Educ Res. 2020; 8(1): 35-40. doi: 10.5958/2454-2660.2020.00007.1.
3.    Harapan H, Michie A, Sasmono RT, et al. Dengue : a minireview. Viruses. 2020; 12 (829): 1–35. doi: 10.3390/v12080829.
4.    Kularatne SA, Dalugama C. Dengue infection: global importance, immunopathology and management. Clin Med J R Coll Physicians London. 2022; 22(1): 9–13. doi: 10.7861/clinmed.2021-0791.
5.    Dehghani R, Kassiri H. A review on epidemiology of dengue viral infection as an emerging disease. Res J Pharm Technol. 2021; 14(4): 2296–2301.doi: 10.52711/0974-360X.2021.00406.
6.    D. Bagul P, N. Badar C, J. Tiwari K. Zika virus: a review. Res J Pharmacol Pharmacodyn. 2022; 14(3): 171–173. doi: 10.52711/2321-5836.2022.00029.
7.    Vandali V. Zika virus: a review. Int J Adv Nurs Manag. 2016; 4(2): 167–168. doi: 10.5958/2454-2652.2016.00038.x.
8.    Soonwera M, Moungthipmalai T, Aungtikun J, et al. Combinations of plant essential oils and their major compositions inducing mortality and morphological abnormality of Aedes aegypti and Aedes albopictus. Heliyon. 2022; 8(5): 1-16. doi: 10.1016/j.heliyon.2022.e09346.
9.    Sudaryanto A, Ainnurriza US, Supratman, et al. Mapping the prevalence of dengue fever in Sragen regency Indonesia. Bali Med J. 2021; 10(3): 1107–1110. doi: 10.15562/bmj.v10i3.2821.
10.    Suwantika AA, Kautsar AP, Supadmi W, et al. Cost-effectiveness of dengue vaccination in Indonesia: Considering integrated programs with wolbachia-infected mosquitos and health education. Int J Environ Res Public Health. 2020; 17 (12): 1–15. doi: 10.3390/ijerph17124217.
11.    Hendron RWS, Bonsall MB. The interplay of vaccination and vector control on small dengue networks. J Theor Biol. 2016; 407: 349–361.doi: 10.1016/j.jtbi.2016.07.034.
12.    Dabashini Devi L. Knowledge regarding selected mosquito borne disease and its prevention. Asian J Nurs Educ Res. 2022; 12 (4): 409–412. doi: 10.52711/2349-2996.2022.00087.
13.    Shinde SS, Frew. Dengue fever: A review. Int J Adv Nur Manag. 2016; 4(2): 161–163. doi: 10.5958/2454-2652.2016.00036.6
14.    Aldar S, Deshmukh G. Mosquito repellent, prevention is better than cure. Asian J Res Pharm Sci. 2019; 9(3): 193-198. doi: 10.5958/2231-5659.2019.00030.4
15.    Unissa R, Jyothirmayi B, Mounica A, et al. Dengue. Asian J Res Pharm Sci. 2018; 8(4): 185–191. doi: 10.5958/2231-5659.2018.00032.2.
16.    Nisa K, Taha RM, Nasir S. Factors affecting community’s behavior in using temephos in Banjarmasin city. Int J Sci Basic Appl Res. 2015; 22 (2): 363–374.
17.    Lesmana SD, Maryanti E, Susanty E, et al. Organophosphate resistance in Aedes aegypti: study from dengue hemorrhagic fever endemic subdistrict in Riau, Indonesia. Reports Biochem Mol Biol. 2021; 10 (4): 589–596. doi: 10.52547/rbmb.10.4.589.
18.    Palomino M, Pinto J, Yañez P, et al. First national-scale evaluation of temephos resistance in Aedes aegypti in Peru. Parasites and Vectors. 2022; 15 (1): 1–13. doi: 10.1186/s13071-022-05310-x.
19.    Corte R La, Melo VAD, Dolabella SS, et al. Variation in temephos resistance in field populations of Aedes aegypti (Diptera: Culicidae) in the state of Sergipe, Northeast Brazil. Rev Soc Bras Med Trop. 2018; 51 (3): 284–290. doi:10.1590/0037-8682-0449-2017.
20.    Valle D, Bellinato DF, Viana-Medeiros PF, et al. Resistance to temephos and deltamethrin in Aedes aegypti from Brazil between 1985 and 2017. Mem Inst Oswaldo Cruz. 2019; 11(3): 1–17. doi: 10.1590/0074-02760180544.
21.    Sudjarwo SA, Ngadino, Koerniasari, et al. Larvicidal Activity of ethanol leaf extract of Pinus merkusii on Aedes aegypti larvae. Res J Pharm Technol. 2017; 10(4): 1011. doi: 10.5958/0974-360x.2017.00182.2.
22.    Johnson AD, Singh A. Toxic effect of biologically active compound rutin extracted from euphorbious plant Codiaeum variegatum against mosquito Culex quinquefasciatus (diptera: culicidae) larvae. Res J Sci Technol. 2017; 9(3): 301–307. doi: 10.5958/2349-2988.2017.00054.7.
23.    Agouillal F, M. Taher Z, Moghrani H, et al. A review of genetic taxonomy, biomolecules chemistry and bioactivities of Citrus hystrix DC. Biosci Biotechnol Res Asia. 2017; 14(1): 285–305. doi: 10.13005/bbra/2446.
24.    Adrianto H, Yotopranoto S, Hamidah. Effectivity of kaffir lime (Citrus hystrix), nasnaran mandarin (Citrus amblycarpa), and Pomelo (Citrus maxima) leaf extract against Aedes aegypti larvae. J Vector-borne Dis Stud. 2014; 6(1): 1–6.doi:
25.    Loh FS, Awang RM, Omar D, et al. Insecticidal properties of Citrus hystrix DC leaves essential oil against Spodoptera litura fabricius. J Med Plants Res. 2011; 5(16): 3739–3744.
26.    Husni E, Putri US, Dachriyanus. Chemical content profile of essential oil from kaffir lime (Citrus hystrix DC.) in Tanah Datar regency and antibacterial activity. Proc 2nd Int Conf Contemp Sci Clin Pharm 2021 (ICCSCP 2021). 2022; 40: 174–181.doi: 10.2991/ahsr.k.211105.025.
27.    Janeh M, Osman D, Kambris Z. Damage-induced cell regeneration in the midgut of Aedes albopictus mosquitoes. Sci Rep. 2017; 7: 1–10.doi: 10.1038/srep44594.
28.    Kadu SG. Sublethal effects of indigenous plant extracts on the biochemical composition of midgut of Carpenter ant, Camponotus compressus F. (hymenoptera: formicidae). Adv Zool Bot. 2021; 9(2): 52–59. doi. 10.13189/azb.2021.090203.
29.    Mishra M, Gupta KK, Kumar S. Impact of the stem extract of Thevetia neriifolia on the feeding potential and histological architecture of the midgut epithelial tissue of early fourth instars of Helicoverpa armigera Hubner. Int J Insect Sci. 2015; 7: 53-60. doi: 10.4137/ijis.s29127.
30.    Sharma A, Kumar S, Tripathi P. Effects of Achyranthes aspera extracts on the survival and midgut histo-architecture of Aedes aegypti L. early IV instars. Open Parasitol J. 2018; 6 (1): 41–51. doi: 10.2174/1874421401806010041.
31.    Sarma R, Khanikor B, Mahanta S. Essential oil from Citrus grandis (Sapindales : Rutaceae) as insecticide against Aedes aegypti (L) (Diptera : Culicidae). Int J Mosq Res. 2017; 4(3): 88–92.
32.    Wikandari RJ, Surati S. Effect of Citrus hystrix DC peels extract against morphology and histology of Aedes aegypti. Aspirator - J Vector-borne Dis Stud. 2018; 10(2): 119–126. doi: 10.22435/asp.v10i2.193.
33.    Senthil-Nathan S. A review of resistance mechanisms of synthetic insecticides and botanicals, phytochemicals, and essential oils as alternative larvicidal agents against mosquitoes. Front Physiol. 2020; 10(1591): 1–21. doi: 10.3389/fphys.2019.01591.
34.    Rohmah EA, Subekti S, Rudyanto M. Larvicidal activity and histopathological effect of Averrhoa bilimbi fruit extract on Aedes aegypti from Surabaya, Indonesia. J Parasitol Res. 2020; 2020: 1–5. doi: 10.1155/2020/8866373.
35.    Liu J, Fernandez D, Gao Y, et al. Enzymology, histological and ultrastructural effects of ar-turmerone on Culex pipiens pallens larvae. Insects. 2020; 11(336): 1–13. doi: 10.3390/insects11060336.
36.    Dutra KA, Wanderley Teixeira V, Cruz GS, et al. Morphological and immunohistochemical study of the midgut and fat body of Spodoptera frugiperda (J.E. Smith) (Lepidoptera: noctuidae) treated with essential oils of the genus Piper. Biotech Histochem 2019; 94(7): 498–513. doi: 10.1080/10520295.2019.1599144.
37.    Agwunobi DO, Hu Y, Yu Z, et al. Cymbopogon citratus essential oil-induced ultrastructural & morphological changes in the midgut, cuticle & Haller’s organ of the tick Haemaphysalis longicornis (Acari: Ixodidae). Syst Appl Acarol. 2020; 25(11): 2047–2062. doi: 10.11158/saa.25.11.10.
38.    Al-Mekhlafi FA. Larvicidal, ovicidal activities and histopathological alterations induced by Carum copticum (Apiaceae) extract against Culex pipiens (Diptera: Culicidae). Saudi J Biol Sci. 2018; 25(1): 52–56. doi:10.1016/j.sjbs.2017.02.010.
39.    Tamilventhan A, Jayaprakash A. Larvicidal activity of Terminalia arjuna bark extracts on dengue fever mosquito Aedes aegypti. Res J Pharm Technol. 2019; 12(1): 87–92. doi: 10.5958/0974-360X.2019.00017.9.
40.    Sina I, Zaharah, Sabri MSM. Larvicidal activities of extract flower Averrhoa bilimbi L. towards important species mosquito, Anopheles barbirostris (diptera: Culicidae). Int J Zool Res. 2016; 12(1-2): 25–31.doi: 10.3923/ijzr.2016.25.31.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

56th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Recent Articles


Not Available