Author(s):
Tri Diana Puspita Rini, Frangky Sangande, Kurnia Agustini, Anton Bahtiar
Email(s):
anton.bahtiar@ui.ac.id
DOI:
10.52711/0974-360X.2024.00318
Address:
Tri Diana Puspita Rini1, Frangky Sangande2, Kurnia Agustini2, Anton Bahtiar1*
1Department of Pharmacology and Toxicology, Faculty of Pharmacy, Universitas Indonesia, Gedung Fakultas Farmasi Kampus UI Depok 16424, Indonesia.
2Research Center for Pharmaceutical Ingredient and Traditional Medicine, The National Research and Innovation Agency (BRIN), South Tangerang, Banten, Indonesia.
*Corresponding Author
Published In:
Volume - 17,
Issue - 5,
Year - 2024
ABSTRACT:
Objective: Hyperlipidemia is increasing lipids in a body that are risk factors for cardiovascular disease that increased last over 30 years. Natural products have a large portion as pharmacological agents, particularly in disease therapies. The pharmacological activity of natural product remedies has been thoroughly screened using high approaches in drug discovery. Lampeni, also known as Ardisia humilis Vahl, is utilized for various illnesses such as vertigo, rheumatism, and skin ulcers, and as a stimulant, carminative, andantidiarrheall.Previous studies have shown that feeding Swiss albino rats alcohol extract at 200mg/KgBW could decrease LDL, triglycerides, total cholesterol, and VLDL and increase HDL. Method: This study aimed to predict Lampenileaf's network pharmacology as a potential for hyperlipidemiausing multiple ethnobotanical databases and software. This research was cond.This is in silico. Results: The result of Lampeni leaf is almost all bioactive compounds targeted hyperlipidemia-associated genes.Compounds with the highest potential of Hyperlipidemia are Ardisinol II, Bilobol, ArdisiphenolB, Maesaquinone, Beta amiryn, and Embelin. IL6, HSP90AA1, EGFR, MAPK3, SRC, PPARG, and STAT3 had the best value and became the gene doth the Lampeni leaf compound.These targets are tightly associated with inflammatory and proliferation processes, which explain the possible explaining Lampeni leaf in attenuating hyperlipidemic symptoms.Further study is needed to validate the result other than by molecular docking method, such as molecular dynamics, in vitro, or in vivo studies.
Cite this article:
Tri Diana Puspita Rini, Frangky Sangande, Kurnia Agustini, Anton Bahtiar. Identification and Analysis of Ardisia humilis as Potential Antihyperlipidemic by Network Pharmacology Followed by Molecular Docking. Research Journal of Pharmacy and Technology. 2024; 17(5):2009-7. doi: 10.52711/0974-360X.2024.00318
Cite(Electronic):
Tri Diana Puspita Rini, Frangky Sangande, Kurnia Agustini, Anton Bahtiar. Identification and Analysis of Ardisia humilis as Potential Antihyperlipidemic by Network Pharmacology Followed by Molecular Docking. Research Journal of Pharmacy and Technology. 2024; 17(5):2009-7. doi: 10.52711/0974-360X.2024.00318 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2024-17-5-14
REFERENCES:
1. Pirillo A, Casula M, Olmastroni E, Norata GD, Catapano AL. Global epidemiology of dyslipidaemias. Nat Rev Cardiol. 2021; Oct;18(10):689-700. doi: 10.1038/s41569-021-00541-4. Epub 2021 Apr 8. PMID: 33833450.
2. Klop B, Elte JW, Cabezas MC. Dyslipidemia in obesity: mechanisms and potential targets. Nutrients. 2013 Apr 12;5(4):1218-40. doi: 10.3390/nu5041218. PMID: 23584084; PMCID: PMC3705344.
3. Stienstra R, Duval C, Müller M, Kersten S. PPARs, Obesity, and Inflammation. PPAR Res. 2007;doi: 10.1155/2007/95974. PMID: 17389767; PMCID: PMC1783744.
4. Corrales P, Vidal-Puig A, Medina-Gómez G. PPARs and Metabolic Disorders Associated with Challenged Adipose Tissue Plasticity. Int J Mol Sci. 2018 Jul 21;19(7):2124. doi: 10.3390/ijms19072124. PMID: 30037087; PMCID: PMC6073677.
5. Wiryono, WiryonoandMersyah, RohidinandTarantona, Mariska. Flora of Danau Dusun Besar conservation forest in Bengkulu Province, Indonesia. Biodiversitas Journal of Biological Diversity. 2020; 21. 10.13057/biodiv/d211209.
6. Tinambunan, fransiska. Phytochemical screening and platelet anti-aggregation test of lampeni leaf extract (Ardisia humilis) from Peucang Island, Ujung Kulon National Park. Journal. Bio. Unsoed. Ac. Id. 2022. DOI: 10.20884/1.sb.2022.9.1.1341
7. Khatun, A., Rahman, M., Kabir, S., Akter, M. N., and Chowdhury, S. A. Phytochemical and pharmacological properties of methanolic extract of Ardisia humilis Vahl. (Myrsinaceae). International Journal of Research in Ayurveda and Pharmacy. 2013;4(1), 38–41. https://doi.org/10.7897/2277-4343.04120
8. Samal, P. K. Evaluation of the Antioxidant activity of Ardisia solanacea in albino rats. Research J. Pharm. and Tech. 2013; 6(5), 585–588.Available on: https://rjptonline.org/AbstractView.aspx?PID=2013-6-5-14
9. Samal, P. K. Assessment of Hypolipidemic Effect of Ardisia solanacea in high-fat diet induced rats. Samal, Pradeep Kumar, 2013; 5(3).
10. Yahya, E., Afshin, hasanvand, Ali, V., Farzad, E., and Saber, A. Natural Antioxidants and Medicinal Plants Effective on Hyperlipidemia. Research Journal of Pharmacy and Technology. 2019. 12(3), 1457–1462. DOI: 10.5958/0974.2019.00242.7
11. Ahmad, S. Recent advances in Pharmacology and Toxicology of Phytopharmaceuticals. Asian Journal of Pharmaceutical Research.2017; 7(4): 222-224. doi: 10.5958/2231-5691.2017.00034.X Available on: https://asianjpr.com/AbstractView.aspx?PID=2017-7-4-2
12. Casas, A. I., Hassan, A. A., Larsen, S. J., Gomez-Rangel, V., Elbatreek, M., Kleikers, P. W., Guney, E., Egea, J., López, M. G., and Baumbach, J. J. From single drug targets to synergistic network pharmacology in ischemic stroke. Proc. Natl. Acad. Sci., 2019; 116, 7129–7136.
13. Hopkins, A. Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol 4, 2008; 682–690. https://doi.org/10.1038/nchembio.118
14. Chandran U, Mehendale N, Patil S, Chaguturu R, Patwardhan B. Network Pharmacology. Innovative Approaches in Drug Discovery. 2017; 127–64. doi: 10.1016/B978-0-12-801814-9.00005-2. Epub 2016 Oct 14. PMCID: PMC7148629.
15. Bagal,A., Tai Borkar, Trupti Ghige, Anushka Kulkarni, Aakanksha Kumbhar, Ganesh Devane, Sachin Rohane. Molecular Docking – Useful Tool in Drug Discovery. Asian Journal of Research in Chemistry. 2022; 15(2):129-2. doi: 10.52711/0974-4150.2022.00020
16. Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A, Han L, He J, He S, Shoemaker BA, Wang J, Yu B, Zhang J, Bryant SH. PubChem Substance and Compound databases. Nucleic Acids Res. 2016 Jan 4;44(D1):D1202-13. doi: 10.1093/nar/gkv951. Epub 2015 Sep 22. PMID: 26400175; PMCID: PMC4702940.
17. Devgun, Manish. Homology modeling and molecular docking studies of DNA replication licensing factor minichromosome maintenance protein 5 (MCM5). Asian Journal of Pharmacy and Technology. 2015. 5. 10.5958/2231-5713.2015.00004.5.
18. Gao K, Song YP, Song A. Exploring active ingredients and function mechanisms of Ephedra-bitter almond for prevention and treatment of Corona virus disease 2019 (COVID-19) based on network pharmacology. BioData Min. 2020 Nov 10;13(1):19. doi: 10.1186/s13040-020-00229-4. PMID: 33292385; PMCID: PMC7653455.
19. Halgren TA. Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J Comput Chem. 1996;17(5-6), 490–519.https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<490::AID-JCC1>3.0.CO;2-P
20. Savithramma N, Yugandhar P, Prasad KS, Ankanna S, Chetty KM. Ethnomedicinal studies on plants used by Yanadi tribe of Chandragiri reserve forest area, Chittoor District, Andhra Pradesh, India. J IntercultEthnopharmacol. 2016 Jan 27;5(1):49-56. doi: 10.5455/jice.20160122065531. PMID: 27069725; PMCID: PMC4805147.
21. Filimonov DA, Lagunin AA, Gloriozova TA, et al. Prediction of the Biological Activity Spectra of Organic Compounds Using the Pass Online Web Resource. Chemistry of Heterocyclic Compounds. 2014;50(3):444-457. doi:10.1007/s10593-014-1496-1.
22. Upmanyu, N., Gupta, S., Prakash, B., Garg, G., and Mishra, P. Cheminformatics: A New Approach. Research Journal of Pharmacy and Technology, 2008;1(1), 2–5.
23. Lipinski CA, Lombardo F, Dominy BW, and Feeney PJ.Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 64(Suppl.). 2012; 4-17.
24. Zhang, L., Shi, X., Huang, Z., Mao, J., Mei, W., Ding, L., Zhang, L., Xing, R., and Wang, P. Network pharmacology approach to uncover the mechanism governing the effect of radix achyranthisbidentatae on osteoarthritis. BMC Complementary Medicine and Therapies, 2020; 20(1). https://doi.org/10.1186/s12906-020-02909-4
25. Anggraeni, V., Purwaniati, Budiana, W., and Nurdin, T. (2022). Molecular Docking Compounds In Methanol Extract Of Mango Leaves (Mangifera Indica L.) As Anti-Inflammatory Agent. Jurnal Kimia Riset (JKR), 7(1).
26. Brooijmans, N., Mobilio, D., Walker, G., Nilakantan, R., Denny, R. A., Feyfant, E., Diller, D., Bikker, J., and Humblet, C. A structural informatics approach to mine kinase knowledge bases, Drug Discovery Today. 2010;15,5-6, 203–209.
27. Saikia S, Bordoloi M. Molecular Docking: Challenges, Advances and its Use in Drug Discovery Perspective. Curr Drug Targets. 2019;20(5):501-521. doi: 10.2174/1389450119666181022153016. PMID: 30360733.
28. Suganya, J., T, V., Radha, M., and Marimuthu, N. In silico Molecular Docking studies to investigate interactions of natural Camptothecin molecules with diabetic enzymes. Research Journal of Pharmacy and Technology. 2017; 10(9), 2917–2922.
29. Saputra, D. P. D.Molecular Docking Sianidin dan Peonidin sebagaiAntiinflamasi pada Atherosclerosis Secara In Silico. Jurnal Farmasi Udayana. 2018; 7(1).
30. Khotimah, S., Kalim, H., Rohman, M. S., andSoeharto, S. Anti-Atherosclerotic Activity of Eleutherine americana Merr. as the Peroxisome Proliferated-Activated Receptor γ Agonist: In Silico Study. Research J. Pharm. and Tech, 2020;13(3), 1423–1428. DOI: 10.5958/0974-360X.2020.00260.7
31. Dai W, Chen HY, Chen CY. A Network Pharmacology-Based Approach to Investigate the Novel TCM Formula against Huntington's Disease and Validated by Support Vector Machine Model. Evid Based Complement Alternat Med. 2018 Dec 11;2018:6020197. doi: 10.1155/2018/6020197. PMID: 30643534; PMCID: PMC6311282.
32. Patil R, Das S, Stanley A, Yadav L, Sudhakar A, and Varma AK. Optimized hydrophobic interactions and hydrogen bonding at the target-ligand interface lead to the pathways of drug designing. PLoS One, 2010;16;5(8):e12029.
33. Chodera JD, Mobley DL. Entropy-enthalpy compensation: role and ramifications in biomolecular ligand recognition and design. Annu Rev Biophys. 2013;42:121-42. doi: 10.1146/annurev-biophys-083012-130318. PMID: 23654303; PMCID: PMC4124006.
34. Omoigui S. The Interleukin-6 inflammation pathway from cholesterol to aging--role of statins, bisphosphonates and plant polyphenols in aging and age-related diseases. Immun Ageing. 2007 Mar 20;4:1. doi: 10.1186/1742-4933-4-1. PMID: 17374166; PMCID: PMC1845171.
35. Sênos Demarco R, Uyemura BS, Jones DL. EGFR Signaling Stimulates Autophagy to Regulate Stem Cell Maintenance and Lipid Homeostasis in the Drosophila Testis. Cell Rep. 2020 Jan 28;30(4):1101-1116.e5. doi: 10.1016/j.celrep.2019.12.086. PMID: 31995752; PMCID: PMC7357864.
36. Kavitha K, Srinivasan N, Mohan S, and Suresh R. Insilico Design and Potential Cytotoxic Agents EGFR Inhibitors of 4(3H) Quinazolinone Derivatives. Research Journal of Pharmacy and Technology, 2021;14(9). DOI: 10.52711/0974-360X.2021.00842
37. Colella B, Colardo M, Iannone G, Contadini C, Saiz-Ladera C, Fuoco C, Barilà D, Velasco G, Segatto M, Di Bartolomeo S. mTOR Inhibition Leads to Src-Mediated EGFR Internalisation and Degradation in Glioma Cells. Cancers (Basel). 2020 Aug 13;12(8):2266. doi: 10.3390/cancers12082266. PMID: 32823532; PMCID: PMC7464593.
38. Saha, D., Jana, M., and Mandal, S. (2011). Target Discovery and Validation: Advances in Molecular Pharmacology. Asian Journal of Pharmaceutical Analysis, 1(2), 27–28. 1(2): April-June 2011; Page 27-28. Available on: https://ajpaonline.com/AbstractView.aspx?PID=2011-1-2-2