Author(s): Chiquita Prahasanti, Restia Akwila, I Komang Evan Wicaksana, Nur Atika, Banun Kusumawardani, Diah Savitri Ernawati

Email(s): chiquita-p-s@fkg.unair.ac.id

DOI: 10.52711/0974-360X.2024.00333   

Address: Chiquita Prahasanti1, Restia Akwila2, I Komang Evan Wicaksana1, Nur Atika3, Banun Kusumawardani4, Diah Savitri Ernawati5
1Department of Periodontology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.
2Student of Periodontics Residential Program, Faculty of Dental Medicine, Universitas Airlangga, Indonesia.
3Undergraduated Student, Faculty of Dental Medicine, Universitas Airlangga, Indonesia.
4department of Biomedical Sciences, Faculty of Dentistry, Jember University.
5Department of Oral Medicine, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.
*Corresponding Author

Published In:   Volume - 17,      Issue - 5,     Year - 2024


ABSTRACT:
Background: The use of antibiotics, steroids, and anti-inflammatories as a therapy for traumatic ulcers can cause resistance and side effects. Furthermore, its application is limited to a few general conditions in patients, necessitating the use of alternative treatments based on natural ingredients and probiotics. Administration of the probiotic Lactobacillus casei Shirota can affect the increase in IL-10 expression in the process of wound healing. Purpouse: The goal of this study is to show that topical and systemic administration of the probiotic Lactobacillus casei Shirota improves the healing of traumatic ulcers in Wistar rats. Methods: A laboratory experimental study of 36 healthy male Wistar rats, 2-3 months old, with a 175-250gram body weight, divided into 6 groups. In all groups, traumatic ulcers were made in the labial region of the inferior incisive fornix using a heated round burner tip. The control group was given Aquadest, and the topical and systemic treatment groups were given probiotics, at a dose of 10.9 x 107cells/kg body weight every day for 4 days and 8 days for traumatic ulcers. The amount of IL-10 expression was observed by IHC examination followed by a one-way ANOVA test. Results: There was a significant difference between the 14-day topical treatment group and the 4-day systemic treatment group (p = 0.000) and between the 8-day topical treatment group and the 8-day systemic treatment group (p = 0.005). In the 4 and 8-day topical treatment groups, there was an increase in the mean amount of IL-10 with a significant difference (p = 0.000). Conclusion: There was an increase in IL-10 expression after administration of the probiotic Lactobacillus casei Shirota in the topical treatment group compared to the control and systemic treatment groups in the healing of traumatic ulcers in Wistar rats (Rattus norvegicus).


Cite this article:
Chiquita Prahasanti, Restia Akwila, I Komang Evan Wicaksana, Nur Atika, Banun Kusumawardani, Diah Savitri Ernawati. Improving the effect of Topical and Systemic administration of Probiotic Lactobacillus casei Shirota on Interleukin-10 Expression in Traumatic Ulcer Healing in Wistar Rats (Rattus norvegicus). Research Journal of Pharmacy and Technology. 2024; 17(5):2103-8. doi: 10.52711/0974-360X.2024.00333

Cite(Electronic):
Chiquita Prahasanti, Restia Akwila, I Komang Evan Wicaksana, Nur Atika, Banun Kusumawardani, Diah Savitri Ernawati. Improving the effect of Topical and Systemic administration of Probiotic Lactobacillus casei Shirota on Interleukin-10 Expression in Traumatic Ulcer Healing in Wistar Rats (Rattus norvegicus). Research Journal of Pharmacy and Technology. 2024; 17(5):2103-8. doi: 10.52711/0974-360X.2024.00333   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2024-17-5-29


REFERENCES:
1.    Febriyanti Ayuningtyas, N., Dwi Condro Surboyo, M., Savitri Ernawati, D., Endah Parmadiati, A., Tuti Hendarti, H., Yasmin Mahdani, F., Winias, S., Zakia, F., and Arella Harianto, I. The role of liquid smoke coconut shell in the proliferation phase of an oral traumatic ulcer. Journal of Pharmacy and Pharmacognosy Research. 2020; 8(6): 549–557. http://jppres.com/jppres
2.    Arundina, I., Diyatri, I., Kusumaningsih, T., Surboyo, M. D. C., Monica, E., and Afanda, N. M. The Role of Rice Hull Liquid Smoke in the Traumatic Ulcer Healing. European Journal of Dentistry. 2021; 15(1): 033–038. https://doi.org/10.1055/s-0040-1714445
3.    Cavalcante, G. M., Paula, R. J. S. de, Souza, L. P. de, Sousa, F. B., Mota, M. R. L., and Alves, A. P. N. N. Experimental model of traumatic ulcer in the cheek mucosa of rats. Acta Cirurgica Brasileira. 2011; 26(3): 227–234. https://doi.org/10.1590/S0102-86502011000300012
4.    Mortazavi, H., Safi, Y., Baharvand, M., and Rahmani, S. Diagnostic Features of Common Oral Ulcerative Lesions: An Updated Decision Tree. International Journal of Dentistry. 2016; 1–14. https://doi.org/10.1155/2016/7278925
5.    Ganesha, R., Hernawan, I., Hendarti, H. T., Radithia, D., Hadi, P., Ayuningtyas, N. F., and Ernawati, D. S. Expression of FGF-2 and Fibronectin in Citrus limon Fruit Peel Malang Essential Oil Gel Treated Traumatic Ulcer in Diabetic Wistar Rats (Rattus novergicus). Research Journal of Pharmacy and Technology. 2019; 12(7): 3350. https://doi.org/10.5958/0974-360X.2019.00565.1
6.    Jain, U., and Gupta, N. Prominent wound healing properties of indigenous medicines. Journal of Natural Pharmaceuticals. 2010; 1(1): 2. https://doi.org/10.4103/2229-5119.73579
7.    Piacentini, M., Borghetti, R. L., Zancanaro de Figueiredo, M. A., Cherubini, K., and Gonçalves Salum, F. Doxycycline: An option in the treatment of ulcerated oral lesions? Journal of Clinical Pharmacy and Therapeutics. 2019; 44(6): 838–843. https://doi.org/10.1111/jcpt.13022
8.    Negut, I., Grumezescu, V., and Grumezescu, A. Treatment Strategies for Infected Wounds. Molecules. 2018; 23(9): 2392. https://doi.org/10.3390/molecules23092392
9.    França, K. Topical Probiotics in Dermatological Therapy and Skincare: A Concise Review. Dermatology and Therapy. 2021; 11(1): 71–77. https://doi.org/10.1007/s13555-020-00476-7
10.    Morelli, L., and Capurso, L. FAO/WHO Guidelines on Probiotics. Journal of Clinical Gastroenterology. 2012; 46: S1–S2. https://doi.org/10.1097/MCG.0b013e318269fdd5
11.    Vijayaram, S., and Kannan, S. Probiotics: The marvelous factor and health benefits. Biomedical and Biotechnology Research Journal (BBRJ). 2018; 2(1): 1. https://doi.org/10.4103/bbrj.bbrj_87_17
12.    Hemaiswarya, S., Raja, R., Ravikumar, R., and Carvalho, I. S. Mechanism of action of probiotics. Brazilian Archives of Biology and Technology. 2013; 56(1): 113–119. https://doi.org/10.1590/S1516-89132013000100015
13.    Lopes, E. G., Moreira, D. A., Gullón, P., Gullón, B., Cardelle-Cobas, A., and Tavaria, F. K. Topical application of probiotics in skin: adhesion, antimicrobial and antibiofilm in vitro assays. Journal of Applied Microbiology. 2017; 122(2): 450–461. https://doi.org/10.1111/jam.13349
14.    Lee, G. R., Maarouf, M., Hendricks, A. J., Lee, D. E., and Shi, V. Y. Topical probiotics: the unknowns behind their rising popularity. Dermatology Online Journal. 2019; 25(5): https://doi.org/10.5070/D3255044062
15.    Azad, Md. A. K., Sarker, M., and Wan, D. Immunomodulatory Effects of Probiotics on Cytokine Profiles. BioMed Research International. 2018: 1–10. https://doi.org/10.1155/2018/8063647
16.    Markowiak, P., and Śliżewska, K. Effects of Probiotics, Prebiotics, and Synbiotics on Human Health. Nutrients. 2017;  9(9): 1021. https://doi.org/10.3390/nu9091021
17.    Aktas, B., De Wolfe, T. J., Safdar, N., Darien, B. J., and Steele, J. L. The Impact of Lactobacillus casei on the Composition of the Cecal Microbiota and Innate Immune System Is Strain Specific. PLOS ONE. 2016; 11(5): e0156374. https://doi.org/10.1371/journal.pone.0156374
18.    Ashraf, R., Vasiljevic, T., Smith, S. C., and Donkor, O. N. Effect of cell-surface components and metabolites of lactic acid bacteria and probiotic organisms on cytokine production and induction of CD25 expression in human peripheral mononuclear cells. Journal of Dairy Science. 2014; 97(5): 2542–2558. https://doi.org/10.3168/jds.2013-7459
19.    Goenharto, S., Rusdiana, E., Salim, S., and Sudiana, I. K. The effect of Eucalyptol on SOD and IL-10 expression in mice exposed to Methyl methacrylate vapor. Research Journal of Pharmacy and Technology. 2021; 2999–3003. https://doi.org/10.52711/0974-360X.2021.00525
20.    Iyer, S. S., and Cheng, G. Role of Interleukin 10 Transcriptional Regulation in Inflammation and Autoimmune Disease. Critical Reviews in Immunology. 2012; 32(1): 23–63. https://doi.org/10.1615/CritRevImmunol.v32.i1.30
21.    King, A., Balaji, S., Le, L. D., Crombleholme, T. M., and Keswani, S. G. Regenerative Wound Healing: The Role of Interleukin-10. Advances in Wound Care. 2014; 3(4): 315–323. https://doi.org/10.1089/wound.2013.0461
22.    Pakyari, M., Farrokhi, A., Maharlooei, M. K., and Ghahary, A. Critical Role of Transforming Growth Factor Beta in Different Phases of Wound Healing. Advances in Wound Care. 2013; 2(5): 215–224. https://doi.org/10.1089/wound.2012.0406
23.    Gonzalez, A. C. de O., Costa, T. F., Andrade, Z. de A., and Medrado, A. R. A. P. Wound healing - A literature review. Anais Brasileiros de Dermatologia. 2016; 91(5): 614–620. https://doi.org/10.1590/abd1806-4841.20164741
24.    Delanghe, L., Spacova, I., Van Malderen, J., Oerlemans, E., Claes, I., and Lebeer, S. The role of lactobacilli in inhibiting skin pathogens. Biochemical Society Transactions. 2021; 49(2): 617–627. https://doi.org/10.1042/BST20200329
25.    Pang, X., Tang, Y., Ren, X., Chen, Q., Tang, Y., and Liang, X. Microbiota, Epithelium, Inflammation, and TGF-β Signaling: An Intricate Interaction in Oncogenesis. Frontiers in Microbiology. 2018; 9. https://doi.org/10.3389/fmicb.2018.01353
26.    Shouval, D. S., Ouahed, J., Biswas, A., Goettel, J. A., Horwitz, B. H., Klein, C., Muise, A. M., and Snapper, S. B. Interleukin 10 Receptor Signaling. 2014; (pp. 177–210). https://doi.org/10.1016/B978-0-12-800267-4.00005-5
27.    Mujayanto, R. Pengaruh ZINC Sulfat 1% Topikal Terhadap Jumlah Makrofag Ulkus Traumatikus MULUT TIKUS Wistar Diabetes . 2016.
28.    Triwardhani, A., Oktaviona, I., Narmada, I. B., Nugraha, A. P., and Riawan, W. The effect of bifidobacterium probiotic on heat shock protein-70 expression and osteoclast number during orthodontic tooth movement in rats (Rattus novergicus). Research Journal Of Pharmacy And Technology. 2021; 14(3): 1477–1481. https://doi.org/10.5958/0974-360X.2021.00262.6
29.    Moorthy, M. K., Nayak, B. K., and Nanda, A. Antioxidant and antitumor activity of lactic bacteria isolated from natural beverage-Coconut toddy. Research Journal of Pharmacy and Technology. 2017; 10(12): 4317. https://doi.org/10.5958/0974-360X.2017.00790.9
30.    Chauhan, S. B., Singh, V., and Chauhan, R. Enteric coated Microbeads as a Potential Delivery System for improved probiotic effect of Lactobacillus rhamnosus GG. Research Journal of Pharmacy and Technology. 2019; 12(12): 6049. https://doi.org/10.5958/0974-360X.2019.01050.3
31.    Kasatkin, M., Smirnova, L., and Babaskin, D. Therapeutic effects of Probiotic Ointment for Atopic Dermatitis. Research Journal of Pharmacy and Technology. 2021; 6041–6048. https://doi.org/10.52711/0974-360X.2021.01050
32.    Plaza-Diaz, J., Ruiz-Ojeda, F. J., Gil-Campos, M., and Gil, A.  Mechanisms of Action of Probiotics. Advances in Nutrition. 2019; 10: S49–S66. https://doi.org/10.1093/advances/nmy063
33.    Hossain, M. K., Nahar, K., Shokryazdan, P., Abdullah, N., Hamid, K., and Jahromi, M. F. Probiotic Potential of Lactic Acid Bacteria Isolated from Cheese, Yogurt and Poultry Faeces. Research Journal of Pharmacy and Technology. 2017; 10(9): 2991. https://doi.org/10.5958/0974-360X.2017.00530.3
34.    Abraham, N., Namachivayam, C., and Sundaramoorthy, S. Lactobacillus- An friendly Bacteria. International Journal of Technology. 2021; 70–77. https://doi.org/10.52711/2231-3915.2021.00010
35.    Swathi, K. V. Probiotics-A Human Friendly Bacteria. Research Journal of Pharmacy and Technology. 2016; 9(8): 1260. https://doi.org/10.5958/0974-360X.2016.00239.0
36.    Malago, J., Tooten, P., and Koninkx, J. F. Anti-inflammatory properties of probiotic bacteria on Salmonella -induced IL-8 synthesis in enterocyte-like Caco-2 cells. Beneficial Microbes. 2010; 1(2): 121–130. https://doi.org/10.3920/BM2009.0021
37.    Kusumaningsih, T., Irmawati, A., Ernawati, D. S., Prahasanti, C., Aljunaid, M., and Amelia, S. The differences in the number of fibroblasts and blood vessels after the topical and systemic administration of Lactobacillus casei Shirota probiotics for the treatment of traumatic ulcers in Wistar rats (Rattus norvegicus). Veterinary World. 2021; 1279–1283. https://doi.org/10.14202/vetworld.2021.1279-1283
38.    Landén, N. X., Li, D., and Ståhle, M. Transition from inflammation to proliferation: a critical step during wound healing. Cellular and Molecular Life Sciences. 2016; 73(20): 3861–3885. https://doi.org/10.1007/s00018-016-2268-0
39.    Zhou, Y., Zhang, T., Wang, X., Wei, X., Chen, Y., Guo, L., Zhang, J., and Wang, C. Curcumin Modulates Macrophage Polarization Through the Inhibition of the Toll-Like Receptor 4 Expression and its Signaling Pathways. Cellular Physiology and Biochemistry. 2015; 36(2): 631–641. https://doi.org/10.1159/000430126
40.    Larouche, J., Sheoran, S., Maruyama, K., and Martino, M. M. Immune Regulation of Skin Wound Healing: Mechanisms and Novel Therapeutic Targets. Advances in Wound Care. 2018; 7(7): 209–231. https://doi.org/10.1089/wound.2017.0761
41.    Primadina, N., Basori, A., and Perdanakusuma, D. S. Proses Penyembuhan Luka Ditinjau dari Aspek Mekanisme Seluler dan Molekuler. Qanun Medika - Medical Journal Faculty of Medicine Muhammadiyah Surabaya. 2019; 3(1): 31. https://doi.org/10.30651/jqm.v3i1.2198
42.    Saqib, U., Sarkar, S., Suk, K., Mohammad, O., Baig, M. S., and Savai, R. Phytochemicals as modulators of M1-M2 macrophages in inflammation. Oncotarget. 2018; 9(25): 17937–17950. https://doi.org/10.18632/oncotarget.24788
43.    Julier, Z., Park, A. J., Briquez, P. S., and Martino, M. M. Promoting tissue regeneration by modulating the immune system. Acta Biomaterialia. 2017; 53: 13–28. https://doi.org/10.1016/j.actbio.2017.01.056
44.    Raziyeva, K., Kim, Y., Zharkinbekov, Z., Kassymbek, K., Jimi, S., and Saparov, A. Immunology of Acute and Chronic Wound Healing. Biomolecules. 2021; 11(5): 700. https://doi.org/10.3390/biom11050700
45.    Steen, E. H., Wang, X., Balaji, S., Butte, M. J., Bollyky, P. L., and Keswani, S. G. The Role of the Anti-Inflammatory Cytokine Interleukin-10 in Tissue Fibrosis. Advances in Wound Care. 2020; 9(4): 184–198. https://doi.org/10.1089/wound.2019.1032
46.    Liu, Y., Yang, J., and Sun, W. Upregulation of IL-10 expression inhibits the proliferation of human periodontal ligament stem cells. Brazilian Oral Research. 2020; 34: https://doi.org/10.1590/1807-3107bor-2020.vol34.0030
47.    Rosyanti, L., Hadi, I., and Keperawatan Poltekkes Kemenkes Kendari, J. Respon Imunitas Dan Badai Sitokin Severe Acute Respiratory Syndrome Corona Virus 2 Literatur Review The Immunity Response and Severe Acute Respiratory Syndrome Coronavirus-2 Cytokine Storm Literature Review. Jurnal Kesehatan Madani Medika.  11(2): 176–201. https://covid19.go.id/
48.    Eming, S. A., Martin, P., and Tomic-Canic, M. Wound repair and regeneration: Mechanisms, signaling, and translation. Science Translational Medicine. 2014; 6(265): https://doi.org/10.1126/scitranslmed.3009337
49.    Sudiono, J., Nasseri, G., Angelina, A., and Arief, O. Pengaruh Minuman Probiotik Mengandung Lactobacillus Casei Shirota Strain Terhadap Penyembuhan Lesi Mukosa Mulut (Kajian Pada Tikus Sprague Dawleys).
50.    Cervin, A. U. The potential for topical probiotic treatment of chronic rhinosinusitis, a personal perspective. Frontiers in Cellular and Infection Microbiology. 2018; 7(JAN). https://doi.org/10.3389/fcimb.2017.00530

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available