Author(s):
Farida Mindubayeva, Mariya Ospanova, Yuliya Niyazova, Yelena Salikhova, Lyudmila Akhmaltdinova, Bibigul Tukbekova, Zhanat Bolatbekuly, Dinara Sadykova
Email(s):
yuliya_niyazova99@mail.ru , salehova_89@mail.ru
DOI:
10.52711/0974-360X.2024.00481
Address:
Farida Mindubayeva1, Mariya Ospanova1, Yuliya Niyazova1*, Yelena Salikhova1*, Lyudmila Akhmaltdinova1, Bibigul Tukbekova1, Zhanat Bolatbekuly2, Dinara Sadykova3
1NCJSC «Karaganda Medical University, Karaganda, Kazakhstan.
2Municipal State Enterprise «Multiprofile Hospital No. 2 of Karaganda» of the Health Department of the Karaganda Region, Karaganda, Kazakhstan.
3Kazan State Medical University, Kazan, Republic of Tatarstan, Russian Federation.
*Corresponding Author
Published In:
Volume - 17,
Issue - 7,
Year - 2024
ABSTRACT:
Background. Pulmonary arterial hypertension (PAH) remains a significant medical challenge with a poor prognosis. Serotonin's role in vascular regulation and its impact on pulmonary arteries, especially in children with congenital heart defects (CHD), highlight its potential importance in developing new diagnostic and treatment approaches. Aim: to study the serotonin metabolism in children with congenital heart defects, complicated with pulmonary arterial hypertension. Results: Serotonin concentration in platelets was three times higher in children with PAH compared to the control group. In patients with severe PAH, serotonin concentration decreased by 20% after surgical treatment, suggesting serotonin's role in PAH development and pulmonary vessel remodeling. Urine tests for 5-hydroxyindoleacetic acid (5-HIAA) showed a 20-fold increase in patients with CHD, which decreased after surgical treatment. Regression analysis revealed a significant correlation between plasma 5-HIAA levels and estimated mean pulmonary arterial pressure. The study demonstrated that serotonin transporter (SERT) was significantly increased in platelets of children with CHD and decreased after surgical correction. Correlation analysis revealed significant relationships between SERT, 5-HT2A, and 5-HIAA levels in platelets, indicating the involvement of the serotonin system in PAH development. Conclusions. The study underscores the growing interest in serotonin metabolism concerning PAH. Clinical data consistently link serotonin to PAH severity, with notable changes observed in urine and plasma levels of serotonin and its metabolites in affected individuals. Further research is needed to unlock the full potential of serotonin as an early biomarker and to explore innovative diagnostic and treatment strategies for PAH, ultimately improving patient outcomes and reducing complications.
Cite this article:
Farida Mindubayeva, Mariya Ospanova, Yuliya Niyazova, Yelena Salikhova, Lyudmila Akhmaltdinova, Bibigul Tukbekova, Zhanat Bolatbekuly, Dinara Sadykova. Serotonin Signaling Disruption: Technological Advances in Detecting its Role in Pediatric Pulmonary Hypertension associated with Congenital Heart Defects. Research Journal of Pharmacy and Technology.2024; 17(7):3073-8. doi: 10.52711/0974-360X.2024.00481
Cite(Electronic):
Farida Mindubayeva, Mariya Ospanova, Yuliya Niyazova, Yelena Salikhova, Lyudmila Akhmaltdinova, Bibigul Tukbekova, Zhanat Bolatbekuly, Dinara Sadykova. Serotonin Signaling Disruption: Technological Advances in Detecting its Role in Pediatric Pulmonary Hypertension associated with Congenital Heart Defects. Research Journal of Pharmacy and Technology.2024; 17(7):3073-8. doi: 10.52711/0974-360X.2024.00481 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2024-17-7-14
REFERENCES:
1. Humbert M. Kovacs G. Hoeper M et al2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. European Heart Journal. 2022; 43(38): 3618-3731. doi: 10.1093/eurheartj/ehac237
2. Abman S. Pediatric Pulmonary Hypertension. Guidelines from the American Heart Association and American Thoracic Society. Circulation. 2015; 132: 2037-2099. doi: 10.1161/CIR.0000000000000329
3. Rosenzweig EB. Abman SH. Adatia I. Beghetti M. Bonnet D. Haworth S. Ivy DD. Berger RMF. Paediatric pulmonary arterial hypertension: updates on definition, classification, diagnostics, and management. European Respiratory Journal. 2019; 53: 1801916. DOI: 10.1183/13993003.01916-2018
4. Qian Y. Quan R. Chen X. Gu Q. XiongC. Han H. Zhang G. Chen Y. Yu Z. Tian H. Liu Y. Zhu X. Li S. Zhang C. He J. Characteristics, Long-term Survival, and Risk Assessment of Pediatric Pulmonary Arterial Hypertension in China: Insights From a National Multicenter Prospective Registry. Chest. 2023; 163(6): 1531-1542. doi: 10.1016/j.chest.2022.11.038
5. Ravi K. Ganapathy D. Sheeba S. Cardiac Failure at Young age- A Review. Research Journal of Pharmacy and Technology. 2018; 11(6): 2641-2646. doi: 10.5958/0974-360X.2018.00490.0
6. Raina A. Abraham WT. Adamson PB. Bauman J.Benza RL. Limitations of right heart catheterization in the diagnosis and risk stratification of patients with pulmonary hypertension related to left heart disease: insights from a wireless pulmonary artery pressure monitoring system. Journal of Heart and Lung Transplantation. 2015; 34(3): 438-447. doi: 10.1016/j.healun.2015.01.983
7. Pascall E. Tulloh RM. Pulmonary hypertension in congenital heart disease. Future Cardiology. 2018; 14(4): 343-353. doi: 10.2217/fca-2017-0065
8. Ploegstra MJ. Arjaans S. Clinical worsening as a composite study endpoint in pediatric pulmonary arterial hypertension. Chest. 2015; 148: 655-666. doi: 10.1378/chest.14-3066
9. Nesrine F. Frederic L. Beghetti M. Diagnosis and treatment of pediatric pulmonary arterial hypertension. Expert Review of Cardiovascular Therapy. 2019; 17(3): 161-175. doi: 10.1080/14779072.2019.1576523
10. Al-Najeem HT. Ghani Al-Dujaili AN. Assessment of Bone Morphogentic protein receptor 2 Level in Pulmonary Arterial Hypertension Disease. Research Journal of Pharmacy and Technology. 2017; 10(8): 2614-2618. doi: 10.5958/0974-360X.2017.00464.4
11. MacLean MR. The serotonin hypothesis in pulmonary hypertension revisited: targets for novel therapies. Pulmonary Circulation. 2018; 8(2): 2045894017753154. doi: 10.1177/2045894018759125
12. Hutcheson JD. Setola V. Roth BL. Merryman WD.Serotonin receptors and heart valve disease. Pharmacology & Therapeutics. 2011; 132:146-157. doi: 10.1016/j.pharmthera.2011.03.008
13. Simonneau G. Hoeper MM. McLaughlin V. Rubin L. Galiè N. Future perspectives in pulmonary arterial hypertension. European Respiratory Review. 2016; 25: 381-389. DOI: 10.1183/16000617.0084-2016
14. Kozlik-Feldmann R. Hansmann G. Bonnet D. Schranz D. Apitz C. Michel-Behnke I. Pulmonary hypertension in children with congenital heart disease (PAH-CHD, PPHVD-CHD). Expert consensus statement on the diagnosis and treatment of paediatric pulmonary hypertension. Heart. 2016; 102: 42-48. doi: 10.1136/heartjnl-2015-308378
15. Kylhammar D. Kjellström B. Hjalmarsson C. Jansson K. Nisell M. Söderberg S. Wikström G. Rådegran G.A comprehensive risk stratification at early follow-up determines prognosis in pulmonary arterial hypertension. European Heart Journal. 2018; 39: 175-181. doi: 10.1093/eurheartj/ehx257
16. Affas S. Sakur AA. New Simple Spectrophotometric Method for the Simultaneous Estimation of the Mixtures of Sildenafil and some Serotonin Reuptake Inhibitors. Research Journal of Pharmacy and Technology. 2019; 12(2): 711-716. doi: 10.5958/0974-360X.2019.00126.4
17. Venkatesha G. Kalaiyarasia C. Ramanathana M. Antidepressant like Effect of Gabapentin Decreases the Immobility Time in Despair Animal Models in Mice: Roll of Serotonergic System in it. Research Journal of Pharmacy and Technology. 2011; 4(11): 1702-1706.
18. Bhagat V. Symbak NB. Husain R. Mat KC. The role of selective serotonin reuptake inhibitors and cognitive behavioral therapy in preventing relapse of Major Depressive Disorder. Research Journal of Pharmacy and Technology. 2019; 12(8): 3818-3824. doi: 10.5958/0974-360X.2019.00654.1
19. Zakaria FH. Ismail S. Khadijah NMJ. Cerebrospinal Fluid Serotonin level as Biomarker for Neurotoxicity after 3,4-Methylenedioxymethamphetamine (MDMA). Research Journal of Pharmacy and Technology. 2022; 15(8): 3796-1. doi: 10.52711/0974-360X.2022.00637
20. Bilalova D. Mindubaуeva F. Nigmatullinna R. Salikhova Y. Monocrotaline model of pulmonary hypertension in immature rats from the perspective of serotonergic regulation. Research Journal of Pharmacy and Technology. 2023; 16(9): 3915-0. doi: 10.52711/0974-360X.2023.00644
21. Mustafin AA. Nigmatullina RR. Bilalova D. Serotonin as the main cause of pulmonary hypertension: from hypothesis to medical practice. Clinical Medicine. 2018; 11(2): 107-111.
22. Pilowsky P.M. Serotonin. The mediator that spans evolution. 2019; 203-238, Elsevier Publishing.
23. Mindubaуeva F. Niyazova Y. Nigmatullina R. Sadykova D.Akhmaltdinova L.Salikhova Y.Kadyrova I.Akhmetova M.Sabirova D.Membrane serotonin transporter as a biomarker of pulmonary arterial hypertension in children with congenital heart defect. Research Journal of Pharmacy and Technology. 2020; 13(5): 2435-2438. doi: 10.5958/0974-360X.2020.00436.9
24. Akhmetova М. Nigmatullina R. Mindubaуeva F.Tykezhanova G.Niyazova Y.Lepesbayeva G. Features of the effect of serotonin on the inotropic function of the right ventricular myocardium in the early postnatal period in infant rats with altered serotonin levels during their embryogenesis. Research Journal of Pharmacy and Technology. 2022; 15(1): 122-126. doi: 10.52711/0974-360X.2022.00020
25. Akhmetova М. Nigmatullina R. Mindubaуeva F. Tykezhanova G. The effect of Adrenaline on the contractility of the Right Ventricular Myocardium in rat pups with altered Serotonin concentration in Ontogenesis. Research Journal of Pharmacy and Technology. 2022; 15(5): 2010-6. doi: 10.52711/0974-360X.2022.00333
26. Mindubayeva F., Niyazova Y., Nigmatullina R., Kabiyeva S., SalikhovaY.. The serotonin system and its metabolism in platelets in children with congenital hearts defects of an early age. Georgian Medical News. 2020; 298(1): 42-46. https://pubmed.ncbi.nlm.nih.gov/32141846/