Author(s):
Marjaa Hanae, Benayad Ouijdane, Soulaymani Abdelmajid, Kajeiou Hamza, Benzakour Abderrahim, Ouhssine Mohammed
Email(s):
hanae.marjaa@uit.ac.ma
DOI:
10.52711/0974-360X.2024.00525
Address:
Marjaa Hanae1, Benayad Ouijdane2, Soulaymani Abdelmajid3, Kajeiou Hamza4, Benzakour Abderrahim1, Ouhssine Mohammed1
1Laboratory of Natural Resources and Sustainable Development (LRDD), Faculty of Science Kenitra (FSK), University Ibn Tofail (UIT), Kenitra 14000, Morocco.
2Laboratory of Applied Chemistry and Environment (LCAE), Faculty of Science, Mohammed Premier University, PB 717, 60000, BV M6, Oujda, Morocco.
3Laboratory of Biology and Health, Faculty of Sciences Kenitra (FSK), Ibn Tofail University (UIT), Kenitra 14000, Morocco.
4Laboratory for Improvement of Agricultural Production, Biotechnology and Environment (LAPABE), Faculty of Science, Mohammed Premier University, PB 717, 60000, BV M6, Oujda, Morocco.
*Corresponding Author
Published In:
Volume - 17,
Issue - 7,
Year - 2024
ABSTRACT:
Wastewater treatment plants play a pivotal role in safeguarding the environment and public health by treating and purifying wastewater before it is released back into natural water bodies. These facilities are essential for mitigating the adverse environmental impacts of urbanization and industrialization, as they help prevent the contamination of rivers, lakes, and oceans with harmful pollutants. Efficient wastewater treatment plants are vital to ensure that the treated water meets regulatory standards and poses no threat to aquatic ecosystems and human communities. The purpose of this work is to evaluate the efficiency of Kenitra wastewater treatment plant process. Over a 6-month period, the study collected and analyzed wastewater samples at the plant's input and output, focusing on parameters such as BOD5, COD, SS, pH, temperature, conductivity, and heavy metals. The data was statistically analyzed using SPSS software, applying chi-square, Fisher's tests, and PCA to draw conclusions from the findings. The physico-chemical analysis of untreated wastewater revealed that most of the assessed parameters remained within acceptable discharge limits, indicating effective purification. Notably, the COD/BOD5 ratio fell within the 2 to 3 range, signifying the wastewater's high biodegradability. Water conductivity, a pivotal water quality assessment indicator, was found to average 1969.00±214.958 µs/cm. The treated wastewater exhibited an acidic pH, with an average value of 5, underscoring the need for coagulant optimization and pH adjustment prior to discharge. On the other hand, the monthly mean values of heavy metals have significantly decreased, especially during April and May. While these findings are promising, it is important to broaden the sampling across additional months for a comprehensive assessment. This research serves as a foundational resource for future studies on the Kenitra WWTP, offering insights that can aid in optimizing plant performance and exploring alternative treatment methods.
Cite this article:
Marjaa Hanae, Benayad Ouijdane, Soulaymani Abdelmajid, Kajeiou Hamza, Benzakour Abderrahim, Ouhssine Mohammed. Evaluation of the Wastewater treatment plant efficiency in Western Morocco, Kenitra city. Research Journal of Pharmacy and Technology. 2024; 17(7):3358-6. doi: 10.52711/0974-360X.2024.00525
Cite(Electronic):
Marjaa Hanae, Benayad Ouijdane, Soulaymani Abdelmajid, Kajeiou Hamza, Benzakour Abderrahim, Ouhssine Mohammed. Evaluation of the Wastewater treatment plant efficiency in Western Morocco, Kenitra city. Research Journal of Pharmacy and Technology. 2024; 17(7):3358-6. doi: 10.52711/0974-360X.2024.00525 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2024-17-7-58
REFERENCES:
1. A. K. Tiwari, “Potassium, Sodium and other Important Physico-Chemical Parameters Present in Drinking Water of Residential Compound of Hostel at Chitrakoot and Majhagwan Area, India,” Res. J. Sci. Technol., 2015; 7(3): 151. doi: 10.5958/2349-2988.2015.00021.2.
2. K. Mamta and A. Singh, “Genotoxic effect of effluents discharged in Ramgarh Lake on Freshwater fish Channa punctatus,” Res. J. Sci. Technol., 2017; 9(4); 669. doi: 10.5958/2349-2988.2017.00114.0.
3. N. S. Laishram, “Assessment of physico-chemical characteristics of ground water quality of some areas of Imphal West district of Manipur during monsoon-2 nd phase,” Asian J. Res. Chem., 2015; 8(8). 545. doi: 10.5958/0974-4150.2015.00087.5.
4. H. Jannat, Nasiruddin, S. Islam, N. Islam, A. Mannan, and Kudrat-E-Zahan, “Determination of different Physico-chemical Parameters of ground and surface water of Rajshahi and Dinajpur District of Bangladesh,” Asian J. Res. Chem., 2020; 13(3). 163. doi: 10.5958/0974-4150.2020.00032.2.
5. C. A. Quist-Jensen, F. Macedonio, and E. Drioli, “Membrane technology for water production in agriculture: Desalination and wastewater reuse,” Desalination, 2015; vol. 364; 17–32: doi: 10.1016/j.desal.2015.03.001.
6. F. Lahlou, S. Namany, H. R. Mackey, and T. Al-Ansari, “Treated Industrial Wastewater as a Water and Nutrients Source for Tomatoes Cultivation: an Optimisation Approach,” 2020, pp. 1819–1824.
7. F. Z. Lahlou, H. R. Mackey, G. McKay, and T. Al-Ansari, “Reuse of treated industrial wastewater and bio-solids from oil and gas industries: Exploring new factors of public acceptance,” Water Resour. Ind., 2021; Dec. vol. 26; 100159: doi: 10.1016/j.wri.2021.100159.
8. S. K. Dixit, A. K. Tiwari, and S. K. Chaturvedi, “Preliminary Investigations of Ground Water Quality in Rural Areas of Karwi, Chitrakoot,” Res. J. Sci. Technol., 2015; 7(3): 176. doi: 10.5958/2349-2988.2015.00024.8.
9. A. Rassam, A. Chaouch, B. Bourkhiss, and M. Bourkhiss, “Performances de la dégradation de la matière organique par lagunage aéré dans la station d ’ épuration des eaux usées de la ville d ’ Oujda,” Bull. la Société R. des Sci. Liège, 2012; vol. 81: 121–125.
10. A. Bouhoreira et al., “Performance Evaluation of Mentha longifolia Plant for Domestic Waste water Treatment under arid climate conditions (Tamanrasset region, Algeria),” Asian J. Res. Chem. 2023; Feb. 31–38. doi: 10.52711/0974-4150.2023.00006.
11. S. Sagar and A. Rastogi, “Adsorption Performance and Reuse Potential of a Green Alga for the removal of an Acidic dye from Synthetic Wastewater,” Asian J. Res. Chem., 2022; Oct. 319–326, doi: 10.52711/0974-4150.2022.00057.
12. A. Kumari and Y. K. Gupta, “Physico- Chemical Assessment of Tube wells Water Quality of Pilani Town District Jhunjhunu, Rajasthan, India.,” Res. J. Sci. Technol., 2022; 91–94. May. doi: 10.52711/2349-2988.2022.00014.
13. B. Kumari and Y. K. Gupta, “Statistical Assesment of Ground Water Quality using Physico-Chemical Parameters in Jhunjhunu District of Rajasthan, India,” Res. J. Sci. Technol., 2015; vol. 7, no. 4, 217. doi: 10.5958/2349-2988.2015.00031.5.
14. N. M. Jean Rodier, Bernard Legube, L’analyse de l’eau- 10e éd, 10th ed. Paris, France, 2016.
15. Arrêté conjoint du ministre de l’énergie, des mines, de l’eau et de l’environnement et du ministre.
16. Ministre de l’intérieur. ministre de l’énergie des mines, Technologies. de l’eau et de l’environnement. ministre de l’industrie du commerce et des nouvelles. Et ministre de, and L’artisanat, “Arreté n° 2942-13,” 2013; vol. 1435: 2456–2458.
17. C. Jean-pierre, P. Jean-marc, D. Philippe, and C. Écric, Aid au diagnostic des stations d’épuration par l’observation microscopique des boues activées, Éditions q. 2011.
18. O. R. Kotsyurbenko et al., “Acetoclastic and hydrogenotrophic methane production and methanogenic populations in an acidic West-Siberian peat bog,” Environ. Microbiol., 2004; 6(11): 1159–1173. doi: 10.1111/j.1462-2920.2004.00634.x.
19. E. Koller, Traitement des pollutions industrielles-2ème édition-Eau.Air.Déchets.Sols.Boues, 2ème éditi. Paris, France, 2009.
20. T. El Moussaoui, M. O. Belloulid, R. Elharbili, K. El Ass, and N. Ouazzani, “Simultaneous assessment of purification performances and wastewater byproducts management plans towards a circular economy: Case of Marrakesh WWTP,” Case Stud. Chem. Environ. Eng., 2022; 6(7) July. 100228. doi: 10.1016/j.cscee.2022.100228.
21. M. Tabet et al., “Mutagenic and genotoxic effects of Guelma’s urban wastewater, Algeria,” Environ. Monit. Assess., 2015; 187(2): 1–13. doi: 10.1007/s10661-015-4281-4.
22. Y. E. L. Guamri et al., “Etude Physico-Chimique Et Parasitologique Des Eaux Usees Destinees a L ’ Irrigation Du Perimetre Peri-Urbain De Fouarat (Kenitra, Maroc),” Agron. Africaine, 2007; 19(3): 251–261.
23. S. Raweh, D. Belghyti, A. Al-Zaemey, Y. El Guamri, and K. Elkharrim, “Qualité physico-chimique des eaux usées de la station d’épuration de la ville de S’anaa (Yémen),” Int. J. Biol. Chem. Sci., 2011; 5(1): 1–10. doi: 10.4314/ijbcs.v5i1.68065.
24. F. Dimane, K. Haboubi, I. Hanafi, and A. El Himri, “Étude de la Performance du Dispositif de Traitement des Eaux UsÉes par Boues ActivÉes de la ville d’Al- Hoceima, Maroc,” Eur. Sci. Journal, ESJ, 2016; 12(17): 272. doi: 10.19044/esj.2016.v12n17p272.
25. Z. Zerrouqi, M. Sbaa, and A. Chafi, “Evaluation des performances de la station d’épuration par Boues activées de Nador (Maroc Oriental),” vol. 61, no. April 2016; 2–8, 2008.
26. F.-Z. Lahlou, H. R. Mackey, and T. Al-Ansari, “Role of wastewater in achieving carbon and water neutral agricultural production,” J. Clean. Prod., 2022; vol. 339: 130706. Mar. doi: 10.1016/j.jclepro.2022.130706.
27. F.-Z. Lahlou, H. R. Mackey, and T. Al-Ansari, “Wastewater reuse for livestock feed irrigation as a sustainable practice: A socio-environmental-economic review,” J. Clean. Prod., 2021; Apr vol. 294; 126331, Apr. doi: 10.1016/j.jclepro.2021.126331.
28. F.-Z. Lahlou, A. AlNouss, R. Govindan, B. Hazrat, H. R. Mackey, and T. Al-Ansari, “Water and sludge resource planning for sustainable agriculture: An energy-water-food-waste nexus approach,” Sustain. Prod. Consum., 2023; 38: 130–148. Jun. doi: 10.1016/j.spc.2023.03.027.
29. F.-Z. Lahlou, H. R. Mackey, and T. Al-Ansari, “Towards the development of an improved mass balance and water quality index based grey water footprint model,” Environ. Sustain. Indic., 2023; Jun. vol. 18; 100236. doi: 10.1016/j.indic.2023.100236.